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Problem 1

At this moment of time, the electron experiences two forces: (1) the electrostatic force of

attraction to the proton and (2) the centripetal force due to the external magnetic field. The

sum of these forces must resemble circular motion; thus, we must compute our answer by

taking into consideration angular acceleration.

∑
F = me~a =

mev
2
e

R

eveB −
ke2

R2
=
mev

2
e

R

eveBR
2 − ke2 = mev

2
eR

In the equation above, e is the elementary charge. By equating this equation to zero, we can

use the quadratic formula to solve for the speed of the electron.

0 = (meR) v2e −
(
eBR2

)
ve + ke2

ve =
eBR2 ±

√
e2B2R4 − 4meRke2

2meR
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To achieve a real solution, and thus a stable circular motion,

e2B2R4 − 4meRke
2 ≥ 0

e2B2R4 ≥ 4meRke
2 R ≥ 3

√
4 (9.11× 10−31) (9× 109)

(0.1)2

R ≥ 3

√
4mek

B2
R ≥ 1.5× 10−6 m

Therefore, the minimum R must be about 1.5 µm.

Problem 2

To find the total amount of time, we must consider two factors: (1) the time it takes for the

rock to hit the ocean and (2) the time it takes for the sound of the splash to travel back to

the physicist. Let’s refer to the diagram below.

First, we’ll need to calculate the time it takes for the rock to hit the water. Let’s call this

time tair. If we consider downward the positive direction, then the expression for tair is,
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d = v0t+
1

2
at2

h = −v0 sin θ t+
1

2
gt2

0 =
1

2
gt2 − v0 sin θ t− h

t =
v0 sin θ ±

√
v20 sin2 θ − 4

(
1
2
g
)

(−h)

2
(
1
2
g
)

tair =
v0 sin θ +

√
v20 sin2 θ + 2gh

g
(Eqn. 1)

We will need to choose the positive solution since choosing the negative solution will result

to a negative time. This, however, is only part of the answer. We must also calculate the

time it takes for the sound to reach the physicist, ts. As the rock hits the ocean, sound waves

travel in all directions. But the one that reaches the physicist in the shortest amount of time

would be the sound that travels in a straight line from the point of contact to the physicist.

Since the speed of sound travels at constant speed in a given medium, we can calculate its

time by dividing the distance the sound wave travels by its speed in air. Calculating this

distance with respect to the original parameters is the tricky part. Let’s refer to the diagram

in the previous page.

In order to calculate the distance, we will need to use the Pythagorean Theorem, since

we can form a right angle triangle. However, we first need to find the horizontal range of

the rock, R, which is the horizontal displacement as it hits the ocean.

d = vt

R = (v0 cos θ) tair

R =
v0 cos θ

(
v0 sin θ +

√
v20 sin2 θ + 2gh

)
g

R =
v20 sin θ cos θ + v0 cos θ

√
v20 sin2 θ + 2gh

g
(Eqn. 2)
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Now that we have R, we can calculate the distance the sound wave travels in order to get

to the physicist by using Equation 2.

ds =
√
R2 + h2

=

√√√√(v20 sin θ cos θ + v0 cos θ
√
v20 sin2 θ + 2gh

g

)2

+ h2

=

√
v40 sin2 θ cos2 θ + 2v30 sin θ cos2 θ

√
v20 sin2 θ + 2gh+ v20 cos2 θ

(
v20 sin2 θ + 2gh

)
g2

+ h2

=

√
v40 sin2 θ cos2 θ + 2v30 sin θ cos2 θ

√
v20 sin2 θ + 2gh+ v40 sin2 θ cos2 θ + 2ghv20 cos2 θ

g2
+ h2

=

√
2v40 sin2 θ cos2 θ + 2v30 sin θ cos2 θ

√
v20 sin2 θ + 2gh+ 2ghv20 cos2 θ

g2
+ h2

=

√√√√2v20 cos2 θ
(
v20 sin2 θ + v0 sin θ

√
v20 sin2 θ + 2gh+ gh

)
g2

+ h2

=

√
2v20 cos2 θ

(
v20 sin2 θ + v0 sin θ

√
v20 sin2 θ + 2gh+ gh

)
+ g2h2

g

We can now calculate the time it takes for the sound wave to reach the physicist.

ts =
ds
vs

=

√
2v20 cos2 θ

(
v20 sin2 θ + v0 sin θ

√
v20 sin2 θ + 2gh+ gh

)
+ g2h2

gvs
(Eqn. 3)

By combining Equation 1 and Equation 3, we get the expression for the total time.
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ttotal = tair + ts

=
v0 sin θ +

√
v20 sin2 θ + 2gh

g
+

√
2v20 cos2 θ

(
v20 sin2 θ + v0 sin θ

√
v20 sin2 θ + 2gh+ gh

)
+ g2h2

gvs

= k1

(
β +

√
β2 + 2γ

)
+ k2

(√
2α2

(
β2 + β

√
β2 + 2γ + γ

)
+ γ2

)

Where the following functions and constants are,

α(v0, θ) = v0 cos θ k1 =
1

g
=

1

9.8
= 0.102 s2 m−1

β(v0, θ) = v0 sin θ k2 =
1

gvs
=

1

9.8× 343
= 3× 10−4 s3 m−2

γ(h) = gh

Problem 3

To find the x and y coordinates of the particle as it hits the detection screen, we must do

this problem one step at a time, starting with the particle going through the electric field.

Since we are assuming this is a uniform electric field, the particle will experience a constant

electric force,

F = q · E

Since the charge is positive, the net force on this particle will be the electric force applied

downwards as the particle is within ~E. Therefore, if we assume downwards is positive, the
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acceleration in the y-direction will be,

a =
qE

m

Note that acceleration in the x-direction is zero, so horizontal velocity will be constant.

Let’s now calculate how much vertical deflection, ydef , we have throughout ~E. Throughout

all calculations, let’s assume downwards is the positive direction.

d = v0t+
1

2
at2

ydef,E = 0 +
qE

2m
t2

Notice that v0t is zero since there is no initial vertical velocity. The only unknown is time,

which we can calculate from our horizontal equation with no acceleration involved.

d = v · t

lE = vtE

tE =
lE
v

As a result, we will end up with,

ydef,E =
qE l2E
2mv2

(Eqn. 1)

As the particle leaves the electric field and is now in the d1 zone, it will experience no net

force, and thus its velocity will be constant. The horizontal component of the velocity is still

v, but the vertical component of velocity can be found. Let’s go back into the lE zone, and

start at the beginning to calculate final speed.

v = v0 + at

vf,y = 0 + atE

vf,y =
qE lE
mv
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To calculate the vertical deflection in d1 zone, we’ll need to calculate the time from the

horizontal equation just like above,

dx = v · t dy = v · t

d1 = vt1 ydef,d1 = vf,yt1

t1 =
d1
v

ydef,d1 =
qEd1lE
mv2

(Eqn. 2)

Now, the particle is going to approach the magnetic field. Before we do any calculations, we

have to understand that charged particles follow a circular path when they enter a magnetic

field. The reason for their circular motion is a result of the centripetal net force equivalent

to the magnetic force,

F = m · a

q v ×B =
mv2

r

When v and B are orthogonal to each other, the circle’s radius is equivalent to

qvB =
mv2

r

r =
mv

qB

However, when v and B are separated by an angle θ that is less than 90◦, we get a helical

motion parallel to B.
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The velocity component that is parallel to B which is equivalent to v cos θ will remain

constant since there is no acceleration in that direction. The velocity component that is

perpendicular to B which is equivalent to v sin θ, however, will be affected by the magnetic

force and result in the particle’s circular motion. As a result, the overall motion is helical.

The distance a particle moves in the direction parallel to B is known as ”pitch”, p. Since we

determined that motion parallel to B is constant, we can calculate p by,

d = v · t

p = v cos(θ)T

where T is the period of revolution for the particle. In order to calculate the particle’s vertical

deflection while it is in the magnetic field, we must use the notion of pitch in our computation.

Before we do any calculation, recall that up to this point, the particle’s velocity compo-

nents are

vx = v vy =
qE lE
mv

Consider the diagram below, representing the particle’s path as it enters the magnetic field,

extended for a length of lB; the dashed curve is the extrapolated path.

The point C is the centre of curvature and r is the radius of curvature. Since the particle

does reach the detection screen, it is important to note that r > lB. If this was not the
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case, the particle will not be able to go past the magnetic field. We are also safe to assume

that the particle will travel the whole length lB since the question states the widths of the

magnets are much greater than their lengths.

By using the Pythagorean theorem, we get

x′ =
√
r2 − l2B

and the angle to be

α = arctan
lB√
r2 − l2B

In order to find the time the particle spends in the magnetic field before it exits, we can take

a ratio of the arc to 2π, a full circle, and multiply it by the period of revolution, T .

darc = r α tB =
darc
2π

T

= r arctan

(
lB√
r2 − l2B

)
=

arctan

(
lB√
r2−l2B

)
2π

T

In circular motion, T can also be written as the following where vc resembles the speed of

constant circular motion,

T =
2πr

vc

Recall that this circular motion is essentially caused by the velocity component that is

perpendicular to the magnetic field, v sin θ in our previous diagram. Since this circular

speed is equivalent to the horizontal velocity component, it is also equivalent to v which is

the particle’s original velocity as it was shot into the electric field in the beginning since

vx = v. As a result, the radius of curvature of this circle will be equivalent to

r =
mv

qB
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and thus, we can conclude that

tB =

arctan

(
lB√
r2−l2B

)
2π

T

=

arctan

(
lB√
r2−l2B

)
2π

(
2πr

v

)

=

arctan

(
lB√
r2−l2B

)
2π

(
2πmv

qBv

)

=
m

qB
arctan

(
lB√
r2 − l2B

)

With some mathematical manipulations and the fact that r = mv
qB

, we get

tB =
m

qB
arctan

 1√(
mv

qB lB

)2
− 1



Now that we have calculated the time the particle spends in the magnetic field before it

exits, we are able to express the vertical deflection of the particle within the magnetic field.

ydef,B = vytB

ydef,B =

(
qE lE
mv

)
· m
qB

arctan

 1√(
mv

qB lB

)2
− 1



ydef,B =
E lE
Bv

arctan

 1√(
mv

qB lB

)2
− 1

 (Eqn. 3)

Note that this is derived from the formula used to calculate the pitch.
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The last part is to compute the deflection in the d2 zone. Since the net force in this zone is

zero, the velocity will be constant. Let’s look at the particle’s final path before it hits the

detection screen.

Since the circular speed is v, it will remain v as it shoots out of the magnetic field. In

fact, the angle remains α by using geometry. Since the net force here is zero, we can easily

calculate how much time it takes for the particle to reach the detection screen.

d = v · t

dr = vt2

d2
cosα

= vt2

t2 =
d2

v cosα

We can simplify cosα to be

cosα =
x′

r

=

√
r2 − l2B
r

=

√
1−

(
lB
r

)2

=

√
1−

(
qB lB
mv

)2
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As a result, we can now get an expression for t2 with our variables included

t2 =
d2

v

√
1−

(
qB lB
mv

)2

To calculate how much y-deflection we have in d2 zone, remember that our vy =
qE lE
mv

even

up to this point. Thus,

dy = vy · t

ydef,d2 =

(
qE lE
mv

)
·

 d2

v

√
1−

(
qB lB
mv

)2


ydef,d2 =

qE lE d2

mv2

√
1−

(
qB lB
mv

)2
(Eqn. 4)

If we put Equations 1-4 all together, we get the expression for total vertical deflection

downwards.

ydef =
qE l2E
2mv2

+
qEd1lE
mv2

+
E lE
Bv

arctan

 1√(
mv

qB lB

)2

− 1

 +
qE lE d2

mv2

√
1−

(
qB lB
mv

)2

The next task is to calculate the deflection of the particle into the screen. Therefore, the

total x-deflection on the detection screen can be described by∑
xdef = xdef + x

′

def

Where xdef and x
′

def are portrayed in the previous figure.
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xdef = r − x′
x

′

def = d2 tanα

= r −
√
r2 − l2B = d2 ·

lB√
r2 − l2B

= r

1−

√
1−

(
lB
r

)2
 = d2 ·

1√(
r

lB

)2

− 1

=
mv

qB

1−

√
1−

(
qB lB
mv

)2
 =

d2√(
mv

qB lB

)2

− 1

Therefore, the total x-deflection will be,

∑
xdef =

mv

qB

1−

√
1−

(
qB lB
mv

)2
 +

d2√(
mv

qB lB

)2

− 1

As a result, the theoretically expected x- and y-coordinates on the detection screen will be:

x− coordinate = −mv
qB

1−

√
1−

(
qB lB
mv

)2
 − d2√(

mv

qB lB

)2

− 1

y − coordinate = −qE l
2
E

2mv2
− qEd1lE

mv2
− E lE

Bv
arctan

 1√(
mv

qB lB

)2

− 1

 − qE lE d2

mv2

√
1−

(
qB lB
mv

)2

The coordinates will both be negative since the particle was deflected downwards and into

the page when referring to the original diagram.
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In the solution above, we have chosen to use the inverse tangent function to find the ver-

tical deflection within the magnetic field. However, there are various ways to represent

this answer, such as using the inverse sine or cosine function. As a result, the theoretical

y-coordinate can also be represented as

y − coordinate = −qE l
2
E

2mv2
− qEd1lE

mv2
− E lE

Bv
arcsin

(
qB lB
mv

)
− qE lE d2

mv2

√
1−

(
qB lB
mv

)2

or

y − coordinate = −qE l
2
E

2mv2
− qEd1lE

mv2
− E lE

Bv
arccos

√1−
(
qB lB
mv

)2
 − qE lE d2

mv2

√
1−

(
qB lB
mv

)2
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