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Problem 1

(a) As explained in the problem, a charged particle while in motion and under the influence

of a magnetic field will follow a circular path. The centripetal force is equivalent to the

magnetic force.

~FB = m · ~a

q(~v × ~B) =
mv2

R

Since ~v is perpendicular to ~B, we can have:

q |~v| | ~B| = mv2

R
T =

2πR

|~v|

R =
m |~v|
q | ~B|

T =
2π

|~v|
· m |~v|
q | ~B|

T =
2πm

q | ~B|

Therefore, the period of rotation is only dependent on the particle’s charge and mass, and

the magnetic field strength. This suggests that as the particle spirals out, its speed and

radius both increase proportionally such that the period is constant.
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(b) If the proton spirals out to reach the very edge of the cyclotron before it exits, that

means it reached its maximum speed. Recall from the work in part (a) that

v =
qR | ~B|
m

∴ vmax =
qRmax | ~B|

m

We can use this to find the maximum kinetic energy.

Emax =
1

2
m(vmax)2

=
1

2
m ·

(
qRmax | ~B|

m

)2

When we manipulate this equation to solve for Rmax, we get

Rmax =

√
2mEmax

q | ~B|

In this equation, Rmax will correspond to the radius of each dee. If we want to find their

diameters, we must multiply this quantity by 2. So, for a proton that leaves the cyclotron

with maximum energy of 25 MeV, the diameter of each dee must be:

Dmax = 2

√
2 · 1.6726× 10−27 kg · 4.0054× 10−12 J

1.6022× 10−19 C · 1.0 T

= 1.44 m (1 eV = 1.6022× 10−19 J)

As for the second part of this question, we can assume that the proton has negligibly small

kinetic energy at the beginning. The kinetic energy, Ek, that the particle with charge q gains

during the acceleration by the voltage ∆V is equal to:

Ek = q∆V
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The proton has to go through the dees n-times to reach the required energy Emax

Emax = nEk

Thus, the n in this case will equal to

n =
Emax

Ek
=
Emax

q∆V
=

4.0054× 10−12

1.6022× 10−19 · 50× 103
≈ 500

Thus, the proton has to loop about 250 times before it exits. Since n = 500, that’s how

many times the particle gets an energy boost. For each loop, it gets boosted twice.

Problem 2

To derive the relation mentioned in the question, we must first understand a key concept in

quantum mechanics. Although matter can behave as a particle, it can also simultaneously

behave as a wave. This concept was proposed by Louis de Broglie in 1924. He hypothesized

that a moving particle has a characteristic wavelength, λ, dependent on its momentum, p,

and vice versa. In fact, the constant relating these two quantities is Planck’s constant, h.

The de Broglie wavelength can be found by:

λ =
h

p

Now, let’s derive the relation using the principle of conservation of momentum. In this 2-

dimensional problem, we need to deal with horizontal component of momentum and vertical

component of momentum. Let’s define the following:

p =
h

λ
= momentum of incident photon.

p1 =
h

λ′
= momentum of scattered photon at angle θ.

p2 = momentum of recoil electron at an angle φ.
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The x component: The y component:

p = p1 cos θ + p2 cosφ p1 sin θ = p2 sinφ

p2 cosφ = p− p1 cos θ

Let’s take a ratio:

p2 sinφ

p2 cosφ
=

p1 sin θ

p− p1 cos θ

tanφ =
p1 sin θ

h

λ
− p1 cos θ

=
p1 sin θ

p1 sin θ

(
h

λp1 sin θ
− cot θ

)

=
1

h

λ h
λ′

sin θ
− cot θ

=
1

λ′

λ sin θ
− cot θ

=
λ sin θ

λ′ − λ cos θ

=
λ sin θ

∆λ+ λ− λ cos θ

=
λ sin θ

∆λ+ λ (1− cos θ)

=
λ sin θ

λ (1− cos θ) +
h

mec
(1− cos θ)

=
sin θ

(1− cos θ) +
h

λmec
(1− cos θ)
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=
sin θ

(1− cos θ) +
h

c
f
mec

(1− cos θ)

=
sin θ

(1− cos θ) +
hf

mec2
(1− cos θ)

=
sin θ

(1− cos θ)

(
1 +

hf

mec2

)
(

1 +
hf

mec2

)
tanφ =

sin θ

1− cos θ

By using the double-angle identities of sine and cosine,

sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ

we can derive the following(
1 +

hf

mec2

)
tanφ =

2 sin θ
2

cos θ
2

1− cos2 θ
2

+ sin2 θ
2

=
2 sin θ

2
cos θ

2

sin2 θ
2

+ sin2 θ
2

=
2 sin θ

2
cos θ

2

2 sin2 θ
2

=
cos θ

2

sin θ
2

= cot
θ

2

∴ cot
θ

2
=

(
1 +

hf

mec2

)
tanφ
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Problem 3

(a) To answer this question, we must draw a detailed yet simple diagram that will help us.

Let’s represent the boat by a simple circle.

In the diagram above, let:

xn = The distance the boat will travel when the nth signal reaches the ocean floor.

↪→ Let the time for this distance correspond to tn.

∆xn = The distance the boat will travel when the nth signal returns from the ocean floor.

↪→ Let the time for this distance correspond to t∆n.

hn = The vertical height travelled by the nth signal.

d0 = The horizontal distance travelled by the boat before it sends its first signal.

Now that we have defined a few things, we can begin. Our ultimate goal is to prove that

dn+1

dn
= K

This stated in another way is

xn+1 + ∆xn+1

xn + ∆xn
= K

In this entire problem, it is very important that we assume vS � vB, as stated by the

question. If these speeds were similar, then the signal will not travel straight down; it will

travel at an angle that will significantly affect the results. It is also important to notice that

the question states all speeds are constant. As a result, we are essentially only dealing with
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d = vt. Let’s start with x1 and ∆x1.

x1 = vBt1 h1 = vSt1

x1

vB
=
h1

vS

x1 =
h1vB
vS

Let’s call dreturn,1 to be the distance the first signal travels as it is coming back to the boat.

Adjacent to this, we can also use the boat’s distance travelled in that time.√
h2

1 + (x1 + ∆x1)2 = dreturn,1 ∆x1 = vBt∆1√
h2

1 + (x1 + ∆x1)2 = vSt∆1
∆x1

vB
= t∆1√

h2
1 + (x1 + ∆x1)2 =

vS
vB

∆x1

h2
1 + x2

1 + 2x1∆x1 + (∆x1)2 =

(
vS
vB

)2

(∆x1)2

If we collect all terms on one side, we get a quadratic equation. We can use the quadratic

formula to solve for ∆x1:

0 =

((
vS
vB

)2

− 1

)
(∆x1)2 − (2x1)∆x1 −

(
h2

1 + x2
1

)

∆x1 =

2x1 ±

√√√√4x2
1 + 4

((
vS
vB

)2

− 1

)
(h2

1 + x2
1)

2

((
vS
vB

)2

− 1

)

∆x1 =

x1 ±

√√√√x2
1 +

((
vS
vB

)2

− 1

)
(h2

1 + x2
1)

(
vS
vB

)2

− 1
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Here, ∆x1 will only have a valid solution if we pick the positive root.

∆x1 =

x1 +

√
x2

1 +

(
h1
vS
vB

)2

− h2
1 +

(
x1 ·

vS
vB

)2

− x2
1(

vS
vB

)2

− 1

∆x1 =

x1 +

√(
h1
vS
vB

)2

+

(
x1 ·

vS
vB

)2

− h2
1(

vS
vB

)2

− 1

Now, we can replace x1 =
h1vB
vS

∆x1 =

h1vB
vS

+

√(
h1
vS
vB

)2

+

(
h1vB
vS
· vS
vB

)2

− h2
1(

vS
vB

)2

− 1

∆x1 =

h1vB
vS

+

√(
h1
vS
vB

)2

+ h2
1 − h2

1(
vS
vB

)2

− 1

∆x1 =

h1vB
vS

+
h1vS
vB(

vS
vB

)2

− 1

∆x1 = h1 ·


v2
S + v2

B

vSvB
v2
S − v2

B

v2
B



∆x1 = h1 ·
[
v2
S + v2

B

vSvB
· v2

B

v2
S − v2

B

]
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∆x1 = h1
vB
vS

[
v2
S + v2

B

v2
S − v2

B

]

Let’s call α =
v2
S + v2

B

v2
S − v2

B

, and thus ∆x1 = h1α
vB
vS

.

In fact, if we generalize this for any nth signal, we get xn = hn
vB
vS

and ∆xn = hnα
vB
vS

.

∴ xn + ∆xn = hn
vB
vS

(1 + α) (Eqn. 1)

Now, we must understand the behaviour of hn with respect to the parameters that we’re

given.

h1 = d0 tan θ

h2 = (d0 + x1 + ∆x1) tan θ

=

(
d0 + h1

vB
vS

(1 + α)

)
tan θ

h3 = (d0 + x1 + ∆x1 + x2 + ∆x2) tan θ

=

(
d0 + h1

vB
vS

(1 + α) + h2
vB
vS

(1 + α)

)
tan θ

=

(
d0 +

vB
vS

(1 + α)
[
h1 + h2

])
tan θ

...

hn =

(
d0 +

vB
vS

(1 + α)
[
h1 + h2 + · · ·+ hn−2 + hn−1

])
tan θ

=

d0 +
vB
vS

(1 + α)

n−1∑
i=1

hi

 tan θ (Eqn. 2)
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Thus, putting Equations 1 and 2 together, we get:

xn+1 + ∆xn+1

xn + ∆xn
=

hn+1
vB
vS

(1 + α)

hn
vB
vS

(1 + α)

=
hn+1

hn

=

d0 +
vB
vS

(1 + α)

n∑
i=1

hi

 tan θ

d0 +
vB
vS

(1 + α)

n−1∑
i=1

hi

 tan θ

=

d0 +
vB
vS

(1 + α)

n−1∑
i=1

hi +
vB
vS

(1 + α)hn

d0 +
vB
vS

(1 + α)

n−1∑
i=1

hi

= 1 +

vB
vS

(1 + α)hn

d0 +
vB
vS

(1 + α)

n−1∑
i=1

hi

= 1 +

vB
vS

(1 + α)hn

hn
tan θ

= 1 +
vB
vS

tan θ (1 + α)

= 1 +
vB
vS

tan θ

(
1 +

v2
S + v2

B

v2
S − v2

B

)

10



= 1 + tan θ
vB
vS

(
v2
S − v2

B + v2
S + v2

B

v2
S − v2

B

)

= 1 +
2vBvS
v2
S − v2

B

tan θ

∴
xn+1 + ∆xn+1

xn + ∆xn
= K = 1 +

2vBvS
v2
S − v2

B

tan θ

(b) In this second part, we must find the total distance, Dn, travelled by the boat for the

nth signal sent and received, since the first one was sent.

D1 = d1

D2 = d1 + d2

= d1

(
1 +

d2

d1

)
= d1(1 +K) = d1(K + 1)

D3 = d1 + d2 + d3

= d1 + d2

(
1 +

d3

d2

)
= d1 + d2(1 +K)

= d1

(
1 +

d2

d1

(1 +K)

)
= d1

(
1 +K(1 +K)

)
= d1(K2 +K + 1)

D4 = d1 + d2 + d3 + d4

= d1 + d2 + d3

(
1 +

d4

d3

)
= d1 + d2 + d3(1 +K)
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= d1 + d2

(
1 +

d3

d2

(1 +K)

)
= d1 + d2

(
1 +K(1 +K)

)
= d1

(
1 +

d2

d1

(K2 +K + 1)

)
= d1

(
1 +K(K2 +K + 1)

)
= d1(K3 +K2 +K + 1)

...

Dn = d1

n−1∑
i=0

Ki

=
(
x1 + ∆x1

) n−1∑
i=0

(
1 +

2vBvS
v2
S − v2

B

tan θ

)i

= h1
2vBvS
v2
S − v2

B

n−1∑
i=0

(
1 +

2vBvS
v2
S − v2

B

tan θ

)i
(Using Equation 1 here.)

= d0 tan θ
2vBvS
v2
S − v2

B

n−1∑
i=0

(
1 +

2vBvS
v2
S − v2

B

tan θ

)i

∴ Dn =
2d0vBvS
v2
S − v2

B

tan θ

n−1∑
i=0

(
1 +

2vBvS
v2
S − v2

B

tan θ

)i

Ultimately, this becomes a special type of geometric series. The value of K resembles the

common ratio, r. The total distance the boat travels since it sends its first signal always

increases by a factor of K, and then add 1, all in terms of d1. By definition since K > 1,

the geometric series that describes the total distance will diverge; as n→∞, D →∞.
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