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Problem 1 — Balancing with Geometry

Partition the shape into two zones: the rectangle, and the right-angle triangles. The pivot

point is the tip of the removed isosceles triangle. The two right-angle triangles form an

isosceles triangle equal in area to the removed segment. Due to its symmetry, this problem

is equivalent to inverting the triangle regions. Therefore, to balance the torques on both

sides, we calculate:

τrectangle = τtriangle

To do so, we must know where the centre-of-mass of the rectangle and the centre-of-mass

of the isosceles triangle are located. Since the material is of uniform density, the torques

are proportional to the areas of each shape. Let a be the width of the square, h be the

height of the triangle, and a − h be the height of the rectangle. The centre-of-mass of an

isosceles triangle is located at one-third its height from its base. Relative to the pivot, the

centre-of-mass for the isosceles triangle is 2
3
h. It is visually intuitive that the centre-of-mass

of the rectangle is located at 1
2
(a− h).

τrectangle = τtriangle

ρ ·
(

1

2
ah

)(
2

3
h

)
= ρ ·

(
a(a− h)

)(1

2
(a− h)

)
1

3
h2 =

1

2
(a− h)2

0 = 3a2 − 6ah+ 2h2
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h = a

(
3±
√

3

2

)

Algebraically, we get two solutions. However, the plus sign solution makes no sense because

it would imply that the pivot is located outside the plate. Therefore, the height of the

isosceles triangle must be

h = a

(
3−
√

3

2

)

Problem 2 — Ocean Surface

The fraction of water molecules on the surface f is the ratio of the size of a water molecule

lw to the average depth of the ocean ld:

f =
lw
ld

=
(Vw)

1
3

ld

where Vw is the volume of a water molecule. To see why this is true, imagine a single column

of water molecules extending from the ocean floor to the surface, and the fraction at the

surface is simply 1 divided by the number of water molecules in the column.

The volume of a water molecule is simply 1 over the density of water (measured in molecules

per cubic metre), so:

Vw =
1

55 mol H2O

L
× 6.0× 1023 molecules

mol
× 1000 L

m3

= 3.0× 10−29 m3

The fraction of molecules on the surface is therefore:

f =
(3.0× 10−29 m3)

1
3

3.6× 103 m
= 8.6× 10−14
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Problem 3 — Heating Metal Spheres

When heated, both balls will undergo thermal expansion, which will change the centre of

mass of each ball by ±∆h (+∆h for ball A, −∆h for ball B). By conservation of energy:

Q = ∆Ethermal + ∆Epotential = mC∆T ±mg∆h

Solving for the change in temperature gives:

∆T =
1

mC

(
Q∓mg∆h

)
Since the second term is negative for ball A but positive for ball B, ball B will have a higher

temperature.

Problem 4 — Lagrange Points

(a) Write Newton’s 2nd Law for m:

GMm

R2
= m ·Rω2

Where
GMm

R2
is the net force acting on m and Rω2 is the centripetal acceleration.

ω2 =
GM

R3

∴ ω =

√
GM

R3

(b) Write Newton’s 2nd Law for µ:

−GMµ

r2
± Gmµ

(R∓ r)2
= −µrω2

The gravitational force between m and µ is positive when µ is positioned in between M and

m, and negative when it’s positioned outside of that interval. As for the distance R ∓ r, it

will be negative when µ is positioned between M and m, and positive when it’s positioned

outside of that interval. In other words, the top sign corresponds to µ being between M and
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m, and the bottom sign corresponds to it being outside of that range.

Let us now substitute for ω:

−GMµ

r2
± Gmµ

(R∓ r)2
= −GMµr

R3

Divide all terms by
GMµr

R2
:

−R
2

r3
± mR2

Mr(R∓ r)2
= − 1

R

Multiply all terms by r, and then factor R out of the (R∓ r)2 term:

−R
2

r2
± m

M
(

1∓ r

R

)2 = − r
R

Using substitutions a =
m

M
and x =

r

R
, we obtain:

− 1

x2
± a

(1∓ x)2
= −x

Finally, multiply by −x2 to get:

x3 = 1∓ ax2

(1∓ x)2

(c) We look at Fnet exerted on µ from the viewpoint of a rotating frame of reference posi-

tioned at M . There is a fictitious centrifugal force equal to µrω2 in the +r̂ direction. Let’s

label the forces acting on µ:

FM =
GMµ

r2
Fm =

Gmµ

(R± r)2
FC = µrω2
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Left side of M :

lim
r→∞

FM = 0 lim
r→0+

FM =∞

lim
r→∞

Fm = 0 lim
r→0+

Fm =
Gmµ

R2

lim
r→∞

FC =∞ lim
r→0+

FC = 0

Fnet points to the left. Fnet points to the right.

Since Fnet is a continuous function for r ∈ (0,∞) and since it has switched direction in this

interval, it must have passed zero at some point r1: Fnet

∣∣∣
r1

= 0

In fact, since the effects of Fm are negligible (Fm � FM), it is true that r1 ≈ R. Same

answer can be obtained from the equation in part (b) → (x ≈ 1).

Between m and M :

lim
r→0+

FM = 0 lim
r→R−

FM =
Gmµ

R2

lim
r→0+

Fm =
Gmµ

R2
lim
r→R−

Fm =∞

lim
r→0+

FC = 0 lim
r→R−

FC = µRω2

Fnet points to the left. Fnet points to the right.

By similar reasoning as before, there exists an r2 ∈ (0, R) such that: Fnet

∣∣∣
r2

= 0

r2 is also close to R and r2 < R.

Right side of m:

lim
r→R+

FM =
Gmµ

R2
lim
r→∞

FM = 0

lim
r→R+

Fm =∞ lim
r→∞

Fm = 0

lim
r→R+

FC = µRω2 lim
r→∞

FC =∞
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Fnet points to the left. Fnet points to the right.

There exists an r3 ∈ (R,∞) such that: Fnet

∣∣∣
r3

= 0

r3 is also close to R but r3 > R.

Therefore, there are a total of 3 Lagrange points on the line connecting m and M .

(d) From part (b), we have:

x33 = 1 +
ax23

(1− x3)2

If m = 0, then a = 0, and thus x33 = 1 solves for x3 = 1. This means that µ would be in the

same location as m.

For the case a� 1:

x3 = 1 + δx3 (Eqn. 1)

where δx3 � 1 since x3 changes by a small amount as well.

∴ (1 + δx3)
3 = 1 +

a(1 + δx3)
2

(δx3)2

Applying the numerical approximation yields:

1 + 3δx3 ≈ 1 +
a(1 + 2δx3)

(δx3)2

(δx3)
2 + 3(δx3)

3 = (δx3)
2 + a+ 2aδx3

3(δx3)
3 = a (since aδx3 � a)

δx3 = 3

√
a

3

∴ x3 = 1 + 3

√
a

3
(using Eqn. 1)
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(e)

x3 =
r3
R

= 1 + 3

√
a

3
→ r3 = R +R 3

√
a

3

R 3

√
a

3
= ∆r3 ' 1.5× 109 m = 1.5 million km

∆r3
rmoon

' 3.9 times

(f) Let us first write Fnet:

Fnet = µrω2 − Gmµ

(r −R)2
− GMµ

r2

It is important to note that ω =

√
GM

R3
no longer applies here. We will instead use conser-

vation of angular momentum to find ω(r).

µ(r3)
2ω0 = µr2 · ω(r)

∴ ω(r) =
(r3)

2ω0

r2
, ω0 =

√
GM

R3

Fnet = µr · (r3)
4(ω0)

2

r2
− Gmµ

(r −R)2
− GMµ

r2
, r3 = Rx3

=
GMµ

R3
· R

4(x3)
4

r3
− Gmµ

(r −R)2
− GMµ

r2
, x =

r

R
and a =

m

M

=
GMµ

R2

[
(x3)

4

x3
− a

(x− 1)2
− 1

x2

]
Note that plugging x = x3 in the above equation gives Fnet = 0. However, we will consider

a small disturbance to the satellite, hence using x = x3 + δx, where δx� x3:

Fnet

GMµ
R2

≡ δfδx =
(x3)

4

(x3 + δx)3
− a

(x3 + δx− 1)2
− 1

(x3 + δx)2
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Using x3 = 1 + δx3 from part (d):

δfδx =
x3(

1 +
δx

x3

)3 −
a

(δx3 + δx)2
− 1

(x3)2
(

1 +
δx

x3

)2

=
x3(

1 +
δx

x3

)3 −
a

(δx3)2
(

1 +
δx

δx3

)2 −
1

(x3)2
(

1 +
δx

x3

)2

We will now apply numerical approximations. Note that both
δx

x3
� 1 and

δx

δx3
� 1:

δfδx ≈ x3

(
1− 3δx

x3

)
− a

(δx3)2

(
1− 2δx

δx3

)
− 1

(x3)2

(
1− 2δx

x3

)

The term with 0th order of δx add up to zero:

δfδx = δx

(
−3 +

2a

(δx3)3
+

2

(x3)3

)

We may use x3 = 1 here since δx3 has negligible effect; hence,
2

(x3)3
≈ 2.

Using δx3 = 3

√
a

3
from part (d):

δfδx = δx (−3 + 6 + 2) = 5δx

∴
δf

δx
= 5 > 0

This means that for δx > 0: δf > 0 and hence Fnet > 0 further increasing x and r. Similarly

for δx < 0: δf < 0 and Fnet < 0 further decreasing x and r. Therefore, this orbit is

unstable.
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