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Problem 1 — The Equilibrium Enigma

For an object that is fully submerged in solution, suspended by a spring, and thus is balanced,

we have: ∑
~F = m · ~a = 0

FG − FB − FS = 0

Where FG is the gravitational force, FB is the buoyancy force, and FS is the spring force.

mg − ρfgVo − k∆x = 0

mg = ρfgVo + k∆x

Where ρf is the density of the solution and Vo is the volume of the object; we use the entire

volume of the object in the equation since it is fully submerged. k is the spring constant,

and ∆x is the length of the spring that is expanded in order to stabilize the object. m is the

mass of the object; we can use its density, ρo, to rewrite the equation as:

ρogVo = ρfgVo + k∆x

Solving for ∆x, we see the formation of a linear function ∆x(ρo).

∆x =
gVo
(
ρo − ρf

)
k

∆x =
gVo
k
ρo −

ρfgVo
k
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This function has slope equivalent to gVo
k

and y-intercept as −ρfgVo
k

. But since gVo is constant

for all cases, we are interested in the following proportions:

slope ∝ 1

k
y-intercept ∝ −ρf

k

Since slope is proportional to only one variable, it is best to start with cases that have the

same slope, namely Case 2 and Case 3. Since Case 2 and Case 3 are parallel, they must

have identical spring constants. But when we compare their y-intercepts, we see that Case

3’s is relatively more negative. This means that the ratio of its solution density to its spring

constant must be higher (and thus more negative). Therefore, Case 2 and Case 3 have the

same spring strength, but Case 3 has a solution of higher density. This eliminates answers B

and D. Now, if we compare Case 1 and Case 2, we observe they have similar y-intercepts but

have different slopes. Since Case 1 has a lower slope, it must have a stronger spring (slope is

inversely proportional to spring constant). This eliminates answer C. If their y-intercepts are

the same, and y-intercept is proportional to the negative ratio of solution density to spring

constant, Case 1 must have a higher solution density than Case 2 (the ratios must be the

same and Case 1 must have a higher k value than Case 2). This eliminates E. Therefore, the

correct answer is choice A. As a side note, Case 1 and Case 3 must have the same solutions

(at least solutions with same density) since their x-intercepts are the same. If we want to

find the x-intercept, we find that:

∆x =
gVo
k
ρo −

ρfgVo
k

0 =
gVo
k
ρo −

ρfgVo
k

ρf = ρo

Since Case 1 and Case 2 share similar object density, they must also share similar solution

density.

Problem 2 — Spherical Charges: Reloaded

For this problem, we will use conservation of energy – it is important to note that in the

beginning and final states, we only have potential energy. The initial state involves zero

velocity, so all energy stored is potential. The final state involves the charges being closest
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together, which is exactly when velocity is equal to zero; therefore, all energy stored is

potential in the final state as well. In both cases, however, the total potential energy involves

gravitational potential energy (Ω) and electric potential energy (Φ). Therefore, if we set the

height to zero at the rod, we get ∑
Ei =

∑
Ef

Ωi + Φi = Ωf + Φf

2mgh+
kq2

L
= −2mgy +

kq2

3
5
L

where h = 4
5
L and y = the vertical height below the rod to the level of the spheres. In fact,

we can solve for y by using the Pythagorean theorem.(
3

10
L

)2

+ y2 =

(
1

2
L

)2

y = L

√
1

4
− 9

100

y =
2

5
L

Going back to our energy equation:

2mgL

(
4

5
+

2

5

)
=
kq2

L

(
5

3
− 1

)
12

5
mgL =

2

3
· kq

2

L

12

5
· 3

2
=

kq2

L2

mg

18

5
=
Fe
Fg

∴
Fe
Fg

= 3.6
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Problem 3 — The Balancing Act

Since the system is in equilibrium, we know that the net force on all objects is zero, so we

can write:

FNet,1 = −Az1z2(2a)b − Az1z3(a+ x)b = 0

FNet,2 = Az2z1(2a)b + Az2z3(a− x)b = 0

FNet,3 = Az3z1(a+ x)b − Az3z2(a− x)b = 0

Equation 3 allows us to cancel Az3 from both sides to write:

z1(a+ x)b = z2(a− x)b

which allows us to solve for x:

z1
z2

=

(
a− x
a+ x

)b
(
z1
z2

) 1
b

=
a− x
a+ x

NOTE: In order for us to be able to take 1/b root here,
z1
z2

must be a non-negative number,

meaning z1 and z2 must have the same sign.

(a+ x)

(
z1
z2

) 1
b

= a− x

a

(
z1
z2

) 1
b

+ x

(
z1
z2

) 1
b

= a− x

x

(
1 +

(
z1
z2

) 1
b

)
= a

(
1−

(
z1
z2

) 1
b

)

x = a ·
1−

(
z1
z2

) 1
b

1 +
(
z1
z2

) 1
b
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x = a · (z2)
1
b − (z1)

1
b

(z2)
1
b + (z1)

1
b

We can now use either Equation 1 or 2 to solve for z3. We will use Equation 1 here:

−Az1z2(2a)b − Az1z3(a+ x)b = 0

z3(a+ x)b = −z2(2a)b

z3 = −z2
(

2a

a+ x

)b

z3 = −z2

 2

1 +
(z2)

1
b − (z1)

1
b

(z2)
1
b + (z1)

1
b


b

z3 = −z2

 2

(z2)
1
b + (z1)

1
b

(z2)
1
b + (z1)

1
b

+
(z2)

1
b − (z1)

1
b

(z2)
1
b + (z1)

1
b


b

z3 = −z2

 2

2 · (z2)
1
b

(z2)
1
b + (z1)

1
b


b

z3 = −z2

(
(z2)

1
b + (z1)

1
b

(z2)
1
b

)b

z3 = −
(

(z2)
1
b + (z1)

1
b

)b
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Problem 4 — The Cannon Conundrum

To start this problem, we need to use one of the kinematics equations to somehow characterize

the speed of the cannonballs. After we have characterized it, we need to generalize it for the

nth shot. We can begin with the equation:

d = v0t+
1

2
at2

This equation is particularly useful to start with because, vertically, the height/displacement

of the cannonballs is zero; this is because the platforms are at identical levels. Therefore, we

can conclude that the following equation will hold in our vertical dimension:

2v0
a

= t

If we take into account the first shot, the time (t1) that corresponds to the time the cannonball

spends in the air will be:

t1 =
2v1 sin θ

g

And if we take into account the second shot, the time (t2) that corresponds to the time the

cannonball spends in the air will be:

t2 =
2v2 sin θ

g

This is essentially true because the angle is not changing. Therefore, as the second platform

approaches, the time the cannonballs spend in the air will become less and less, and, propor-

tionally, the muzzle speed will also decrease. Therefore, we can conclude that the following

equation holds for the nth shot:

tn =
2vn sin θ

g
(Equation 1)

Now that we have somehow generalized vn, this is in terms of tn only, a quantity which is

unknown. However, since time is a non-vector variable, it will be true for all dimensions;

this makes it a perfect bridge between the vertical and horizontal dimensions. Let’s now

characterize the muzzle speed in the horizontal direction.

Since there is no acceleration in the horizontal direction, the only kinematics equation we
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will need to work with is d = vt, where d is the horizontal displacement, v is horizontal

speed, and t is time. In the first shot, the cannonball will NOT travel a total distance of

D, but something less than that. This is true because the second platform is moving; in

fact, it is moving with a constant speed. Therefore, the horizontal distance the cannonball

actually travels for the first shot will be D − ut1, where t1 is the time the cannonball from

the first shot spends in the air; the term ut1 corresponds to the distance the second platform

has moved in that given time. Therefore, our horizontal equation d = vt for the first shot

becomes:

D − ut1 = v1 cos(θ)t1

And similarly, the horizontal equation for the second shot becomes:

D − ut1 − ut2 = v2 cos(θ)t2

where the term ut2 corresponds to the horizontal distance the second platform has moved

during the second shot. If we generalize this, we get

D − ut1 − ut2 − ut3 − ...− utn−1 − utn = vn cos(θ)tn

This can be written in summation notation as:

D − u
n∑
i=1

ti = vn cos(θ)tn

Replacing for ti and tn using Equation 1 achieves:

D − u
n∑
i=1

2vi sin θ

g
= vn cos(θ)

(
2vn sin θ

g

)

D − 2u sin θ

g

n∑
i=1

vi =
v2n · 2 sin θ cos θ

g

Dg − 2u sin θ
n∑
i=1

vi = v2n sin 2θ (Equation 2)
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This equation will also hold for muzzle speed up to (n+ 1)th shot:

Dg − 2u sin θ
n+1∑
i=1

vi = v2n+1 sin 2θ

We will pull the (n+ 1)th term out of the summation to get:

Dg − 2u sin θ
n∑
i=1

vi − 2uvn+1 sin θ = v2n+1 sin 2θ

Using Equation 2, we get:

v2n sin 2θ − 2uvn+1 sin θ = v2n+1 sin 2θ

We can now simplify for vn+1 to get a quadratic equation, which we can use the quadratic

formula to solve for:

v2n − uvn+1 sec θ = v2n+1

0 = v2n+1 + uvn+1 sec θ − v2n

vn+1 =
−u sec θ ±

√
u2 sec2 θ + 4v2n

2

∴ vn+1 =

√
u2 sec2 θ + 4v2n − u sec θ

2

We must pick the positive solution since that is the only way vn+1 can be positive.
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