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Problem 1 — Cannon InfinyX

This question is essentially aimed at finding R, the horizontal displacement of the cannonball

from the muzzle of the cannon to the location of landing. In this case, R is simply:

R = v cos(θ)T

where T is the time that the cannonball spends in the air from when it is shot out from

the muzzle. In order to solve this problem, therefore, we must find v and T since cos(θ) is

already in terms of θ. To solve for the muzzle velocity of the cannonball, we can use one of

the primary kinematics equations

v = v0 + at

Since v0 = 0 and a = g, we get

v = gτ

as the ball is accelerated constantly for τ seconds. Next, let us calculate d which is the length

of the barrel with respect to τ .

d = v0t+
1

2
at2

= (0)τ +
1

2
gτ 2

=
1

2
gτ 2
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As a result, the magnitude of the vertical displacement of the cannonball from the muzzle

of the cannon to the location of landing is

∣∣~dy∣∣ =
1

2
gτ 2 sin(θ)

We can now use our other primary kinematics equation to solve for T by picking the down-

ward ŷ to be positive:

d = v0t+
1

2
at2

1

2
gτ 2 sin(θ) = −v sin(θ)T +

1

2
gT 2

1

2
gτ 2 sin(θ) = −gτ sin(θ)T +

1

2
gT 2

1

2
τ 2 sin(θ) = −τ sin(θ)T +

1

2
T 2

0 =
1

2
T 2 − τ sin(θ)T − 1

2
τ 2 sin(θ)

By using the quadratic equation:

T =
τ sin(θ)±

√
τ 2 sin2(θ) + 4

(
1
2

) (
1
2
τ 2 sin(θ)

)
2
(

1
2

)
= τ sin(θ) +

√
τ 2 sin2(θ) + τ 2 sin(θ)

= τ

(
sin(θ) +

√
sin2(θ) + sin(θ)

)
since we must pick the positive solution for T to be positive. We can now solve for R by

using our answers for v and T .

R = v cos(θ)T

= gτ cos(θ) · τ
(

sin(θ) +
√

sin2(θ) + sin(θ)

)
= gτ 2 cos(θ)

(
sin(θ) +

√
sin2(θ) + sin(θ)

)
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= 2d cos(θ)

(
sin(θ) +

√
sin2(θ) + sin(θ)

)

∴ C(θ) = 2 cos(θ)

(
sin(θ) +

√
sin2(θ) + sin(θ)

)
We have found our solution for C(θ), but to make our answer a bit more tidy, we can do the

following:

C(θ) = 2 cos(θ)

(
sin(θ) +

√
sin2(θ) + sin(θ)

)

= 2 cos(θ)

(
sin(θ) +

√
sin2(θ)

(
1 +

1

sin(θ)

) )

= 2 cos(θ)
(

sin(θ) + sin(θ)
√

1 + csc(θ)
)

= 2 sin(θ) cos(θ)
(

1 +
√

1 + csc(θ)
)

∴ C(θ) = sin(2θ)
(

1 +
√

1 + csc(θ)
)

Problem 2 — Colliding Black Holes

a) A black hole, by definition, is a gravitational trap for light. It will therefore involve

Newton’s constant G, which is related to the strength of gravity, and the speed of light c.

The mass of the particle is also relevant, since we expect a heavier particle to correspond to

a heavier black hole. We denote the units of a quantity by square brackets, [·]. Obviously,

[M ] = mass and [c] = distance/time. From Newton’s law of gravitation,

F =
GMm

r2
=⇒ [G] =

[F ][r]2

[M ]2
=

length3

time2 ·mass
,

where we used

[F ] = [ma] = mass · length

time2 .

Area has the units of length2. We can systematically analyse the units using simultaneous

equations, but here is a shortcut: time doesn’t appear in the final answer, so we must combine
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G and c as G/c2, which has units

[Gc−2] =
length

mass
.

To get something with units length2, we must square this and multiply by M2. It follows

that, up to some dimensionless constant η, the area of the black hole is

A =

(
ηG2

c4

)
M2.

b) Consider two black holes of mass M1,M2. The initial and final area are

Ainit = A1 + A2 =
ηG2

c4
(M2

1 +M2
2 ), Afinal =

(
ηG2

c4

)
M2

final.

If Ainit = Afinal, we have maximal loss of mass; if Mfinal = M1 + M2, we minimise the mass

loss. The percentage of mass lost will depend on the mass of the black holes, but to place

an upper bound, we want to choose the masses to maximise the fraction of mass lost. The

simplest way to proceed is to instead look at the difference of squared masses,

∆M2 = M2
final −M2

1 −M2
2 = (M1 +M2

2 )2 −M2
1 −M2

2 = 2M1M2.

Since we only care about the fraction lost, we can require a total initial mass M = M1 +M2

for fixed M , and now try to choose M1,M2 to maximise the square of mass lost:

∆M2 = 2M1M2 = 2M1(M −M1).

This is just a quadratic in M1, with roots at M1 = 0 and M1 = M . The maximum will be

precisely in between, at M1 = M/2. Of course, maximising the square of lost mass should

be the same as maximising the lost mass itself, so we obtain an upper bound on mass loss

in any black hole collision by setting M1 = M2, with a fractional loss

1− Mfinal

M1 +M2

= 1−
√
M2

1 +M2
1

M1 +M1

= 1−
√

2

2
≈ 0.29.

Since the mass can be converted into gravitational waves, we have the 29% bound we were

looking for!
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c) From the last question, we know that we maximise the energy converted into gravita-

tional waves when the total area doesn’t change,

Afinal = A1 + A2 =
ηG2

c4
(M2

1 +M2
2 ) =

(
ηG2

c4

)
M2

final.

This corresponds to a loss of mass

∆M = M1 +M2 −Mfinal = M1 +M2 −
√
M2

1 +M2
2 ≈ 18.9M�.

We can convert this to energy using the most famous formula in physics, E = mc2. To find

the average power P , we divide by the duration of the signal t = 0.2 s. We find

PBH =
E

t
=

∆Mc2

t
=

18.9 · 2 · 1030(3× 108)2

0.2
W ≈ 1.7× 1049 W.

Since PBH > Pstars, we see that for a brief moment, colliding black holes can outshine all the

stars in the universe.

Problem 3 — Charges on a Rail

a) Write energy conservation for the system:

mv2

2
=
kqQ

df
−→ df =

2kqQ

mv2

b) One way of solving would be to write energy and momentum conversation for the sys-

tem and solve equations to find vm and vM :

E :
mv2

2
=
mv2

m

2
+
Mv2

M

2

P : mv = mvm +MvM

An easier and more elegant method is to view the system from the perspective of centre of

momentum. From the frame of reference of the stationary observer:
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From the frame of reference of centre of momentum moving with constant velocity vcm =
mv

m+M
to the right:

Since momentum of the system is zero in this frame of reference, the collision simply causes

a change in direction of velocities as shown above. Therefore, transforming velocities to

stationary frame:

vm = 2vcm − v =
(m−M)v

m+M

vM = 2vcm =
2mv

m+M

c) Minimum distance dr is achieved when m and M have equal velocities. Let’s see what’s

the reason why this is the case. We write momentum and energy conservation taking vm =

vM = v′:

E :
mv2

2
=
mv′2

2
+
Mv′2

2
+
kqQ

dr

P : mv = mv′ +Mv′

From momentum, solving for v′, we have v′ =
mv

m+M
and plugging into energy:

mv2

2
=

(m+M)

2
· m2v2

(m+M)2
+
kqQ

dr

∴ dr =
2kqQ(m+M)

mMv2

d)
dr
df

= 1 +
m

M
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In limiting case
m

M
� 1, we have dr ≈ df . This is intuitive since the much larger mass of M

means fixing it does not have much effect on the system. In limiting case
m

M
� 1, we get

dr
df
� 1. This outcome also makes sense since if M is not fixed, it can easily gain momentum

and escape due to its low mass.

Problem 4 — “Trick-Shot” Tyler

a) Since the ball has a perfectly elastic collision with the wall, the y component of its

velocity remains unchanged while the x component of its velocity is reflected.

v′x = −vx

v′y = vy

This means that if we look at the reflection of the path of the ball in the wall (as if the wall

was a mirror), we can see an undisturbed projectile motion with range R =
v2 sin 2θ

g
(try to

derive this if it is unfamiliar):

Therefore, we have R = 2d+ L and thus:

L =
v2 sin 2θ

g
− 2d

b)

vx = v cos θ vy = v sin θ − gtcollision
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We can find tcollision from motion in x:

vxtcollision = d −→ tcollision =
d

vx

Therefore,

vy = v sin θ − gd

vx
= v

(
sin θ − gd

v2 cos θ

)
c) Since no slipping occurs, we have v′y = Rω′. And by momentum conservation in x,

v′x = vx. We can write energy conservation:

mv2

2
=
m(v′)2

2
+
I(ω′)2

2

v2 = v2
x + v2

y

(v′)2 = (v′x)2 + (v′y)
2

= v2
x + (v′y)

2

Hence, the energy conservation simplifies to:

mv2
y = m(v′y)

2 + I

(
v′y
R

)2

v2
y = (v′y)

2 +
2

5
(v′y)

2

v′y =

√
5

7
vy

d) Using our answers to parts (b) and (c) we are solving for the range of projectile in the

following setup:
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Where

h = vytcollision −
gt2collision

2
= d tan θ − gd2

2v2 cos2(θ)

We can write equations for x and y:

yT = 0 = h+ v′yT −
gT 2

2

xT = v′xT

From first equation, we can solve for T :

T =
v′y
g

+

√
(v′y)

2

g2
+

2h

g

And since L′ = xT − d, we have:

L′ =
v′xv

′
y

g
+
v′x
g

√
(v′y)

2 + 2gh− d

Using the obtained values for v′x and v′y we know:

v′xv
′
y

g
=

√
5

7

(
v2 sin 2θ

2g
− d
)

and defining C ≡ v2 sin 2θ

2gd
, we can simplify:

v′xv
′
y

g
=

√
5

7
d (C − 1)

Furthermore, we know:

(v′x)2h

g
=
v2 cos2(θ)

g

(
d tan θ − gd2

2v2 cos2(θ)

)

=
v2 sin(2θ)d

2g
− d2

2
= d2

(
C − 1

2

)
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Using what we obtained for
v′xv

′
y

g
and

(v′x)2h

g
, we have:

L′ =
v′xv

′
y

g
+

√(
v′xv

′
y

g

)2

+
2(v′x)2h

g
− d

=

√
5

7
d (C − 1) +

√
5

7
d2(C − 1)2 + 2d2

(
C − 1

2

)2

− d

= d

[√
5

7
(C − 1) +

√
5

7
(C − 1)2 + 2C − 1− 1

]

e) Using values provided, we have C = 2.5 and therefore:

L = 2d(C − 1) = 6 m

L′ = 5.27 m

∴ ∆L = L− L′ = 0.73 m

This is quite a significant difference.
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