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Problem 1 — Quantum Strings and Vacuums

1. From the picture, we see that λ is an allowed wavelength if L is a multiple of λ/2.

More precisely,

L =
nλ

2
=⇒ λn =

2L

n
.

2. The total rest energy of the quantum string is

E0 =
α

λ1
+
α

λ2
+
α

λ3
+ · · · = α

2L
(1 + 2 + 3 + · · · ) = − α

2L
· 1

12
= − α

24L
.

3. A jump in energy ∆E in energy over a distance ∆x leads to an average force

Favg = −∆E

∆x
.

In this case, the distance over which the energy drops is the thickness of the plates,

∆x = `, while the change in energy (as we move into the area between plates) is

∆E = Eplates − Evacuum = Eplates =
α

24L
,

since the energy for the electromagnetic waves between plates takes the same form as

harmonics in the stretched string. Thus, the average force on each plate is

Favg = −E
0

`
=

α

24`L
.

This is positive, hence directed towards the region between plates. This means the

plates are squeezed together!
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4. If there are D directions, then one direction is parallel to the string, and the remaining

D− 1 directions are perpendicular to it. Thus, there are D− 1 independent directions

the string can wobble in.

5. There are D − 2 directions with all harmonics at rest, and one direction with its first

harmonic (the red vibration in the picture above) in its first energy level. From question

2, the unexcited directions have total rest energy

E0 = − α

24L
.

From the expression for Ei
mn, we see that by setting m = n = 1, we add an energy

2αm

λn
=

2α

λ1
=
α

L

to the unexcited energy of the harmonic. Thus, the total energy of the string is

E = (D − 2)E0 +
(
E0 +

α

L

)
=
α

L

(
−D − 1

24
+ 1

)
.

If the photon is massless, then m = 0, and by the most famous formula in physics,

E = mc2 = 0.

This implies that

−D − 1

24
+ 1 = 0 =⇒ D = 25.

Problem 2 — Black Hole Hard Drives

1. We calculate the entropy from the area law, and convert the answer from bits to GB:

S =
A

A0

bits

≈ 4π(10−15)2 m2

10−69 m2
bits

≈ 1.25× 1040 bits

≈ 1.25× 1040

8× 109
GB

≈ 1.6× 1030 GB ≈ 5× 1020 global computer storage.
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A tiny black hole contains more information than all the world’s computers, by an

unimaginably large factor ∼ 1020. That’s roughly the number of grains of sand in the

world! Perhaps GoogleX is working on black hole hard drives as we speak.

2. First, note that the mass of the sphere M must be smaller than the mass of the

corresponding black hole MA, otherwise it would have already collapsed! We can

therefore add a spherical shell of matter, mass MA−M , and compress it to ensure the

surface area is A. By assumption, this spherical object will immediately collapse to

form a new black hole. Schematically, we are performing the following “sum”:

+ =A A

The shell of matter has its own entropy S ′′, so the total entropy of system before

collapse is larger than the black hole entropy:

S ′ + S ′′ > S ′ > SBH.

However, after the collapse, the entropy is just the black hole entropy SBH. So we seem

to have reduced the total entropy! This violates the Second Law of Thermodynamics.

Our assumption, that S ′ > SBH, must have been incorrect. We learn that black holes

are the best spherical hard drives in existence!

3. Black holes have maximum entropy density. Using the area law, the entropy density

of a black hole of radius r is

S

V
=

4πr2

A04πr3/3
=

3

A0r
.

4. The previous result shows that, as a spherical hard drive gets large, the maximum in-

formation density gets very low. Since this is a maximum, density and hence processing

speed is low in any large hard drive.
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Problem 3 — Swinging on a Swing

3.1 Pumping from the Sitting Position

1. Taking each mass m to represent the center of mass of the upper and lower halves of

the body, we have:

m =
M

2
, a =

h

4

And a reasonable angle of rotation for the body would be:

∆φ =
π

2

2. At the left-most extreme the barbell should rotate CCW (rider switching from the sat

to the leaned back position) to increase the swing amplitude by conservation of angular

momentum. In contrast, at the right-most extreme the barbell should rotate CW.

3. Writing the angular momentum conservation about the point of attachment of swing

to the ceiling, we have:

∆L = (Ml2 + 2ma2) ∆θ − 2ma2 ∆φ

whereby Io = Ml2 + 2ma2 is the moment of inertia of the swing by the parallel axis

theorem. Substituting our approximations from part (1), we get:

∆θ =
∆φ · 2

(
M
2

)
a2

Ml2 + 2
(
M
2

)
a2

=
∆φ

1 + l2

a2

=
π/2

1 + 16l2

h2

4. Since every half-oscillation of the swing results in an increase in amplitude of ∆θ, after

n half-oscillation we have:

θn = θ0 +
nπ/2

1 + 16l2

h2

An interesting observation is that this amplitude is independent of the rider?s mass.

So your mass does not affect how fast you can pump a swing when seated; more height

is however an advantage.
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3.2 Pumping from the Standing Position

1. While stood, assuming the body?s center of mass is at the center, we have:

l1 = l − h

2

And assuming the rider squats to half their height, we have:

l2 = l − h

4

2. When moving the fastest, at θ = 0, the rider does work by moving up against the

centrifugal force (2 → 3 in the figure below), as perceived in the rotating frame of

reference. This work results in an increase in the amplitude.

3. Let us first write the work done by the rider, assuming that the centrifugal force is

constant (since h� l):

W = Fd ≈ Mv2

l
· h

4
=
Mv2

2
· h

2l

And applying energy conservation between (1) and (2):

W = Mgl (1− cos (θn)) · h
2l

=
Mgh (1− cos (θn))

2

Now writing energy conservation between (1) and (4) and noting that the work done
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has resulted in an overall increase in rider’s potential energy:

−Mgl1 cos (θn+1) = −Mgl2 cos (θn+1) +
Mgh (1− cos (θn))

2

Let us define ε ≡ h
l
� 1 for convenience. Simplifying the above equation, we get:

cos (θn+1) =

(
1− ε/4
1− ε/2

)
cos (θn)− ε

2
(1− cos (θn))

We can make the approximation 1−ε/4
1−ε/2 ≈ 1 + ε

4
and solve for cos (θn+1):

cos (θn+1) =

(
1 +

3ε

4

)
cos (θn)− ε

2

4. Starting with cos (θ0) and applying the relation found in part (3) recursively:

cos (θ1) =

(
1 +

3ε

4

)
cos (θ0)−

ε

2

cos (θ2) =

(
1 +

3ε

4

) ((
1 +

3ε

4

)
cos (θ0)−

ε

2

)
− ε

2

And now applying first-order approximations, we have:

cos (θ2) =

(
1 +

2 · 3ε
4

)
cos (θ0)−

2ε

2

Applying this relation a few more times, we start to see a pattern describing the general

solution after n half-oscillations (visit the “Recurrence relation” page on Wikipedia to

see more formal and rigorous methods for solving recurrence relations):

cos (θn) =

(
1 +

3nε

4

)
cos (θ0)−

nε

2
= cos (θ0) +

nε

2

(
3

2
cos (θ0)− 1

)

5. We can see that to our approximations, the growth rate for amplitude is linear for

(3.1). This is also the case for (3.2) to a reasonable approximation. Both growth rates

are independent of rider’s mass and solely depend on the ratio h
l
.

Another observation is that for pumping when seated (3.1), the incremental increases in

amplitude are independent of the initial amplitude, while for pumping when standing
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(4.1), an initial amplitude of θ0 > cos−1(2/3) ≈ 48◦ is required to pump the swing at

all! This is a very unexpected result; it indicates the weakness of our second model.

One cause is the assumption h � l we made to simplify the problem, which does not

hold since with reasonable estimates we have h
l
≈ 0.5.
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