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Problem 1 — Hubble’s Law and Dark Energy

1. Hubble’s law says that

v = Hd.

Assuming that H is constant, the rate of change of the left side is just the acceleration

a, while the rate of change of the right side is v, multiplied by the constant H. So

a = Hv = H2d.

Since the universe is expanding, d increases with time. Hence, the acceleration also

increases with time!

2. Let’s run time backwards until a faraway object collides with us. If the distance is d,

and the velocity v, then by Hubble’s law the time needed to hit us is

tcollision =
d

v
=

1

H
.

Since this is the same for any object, it suggests that a time tcollision, every object in the

universe was in the same place. This must be the Big Bang! The age of the universe

is then tcollision, which we can estimate from the Virgo cluster as

tcollision =
d

v
=

53× 106 × (3× 108 m/s)

1.2× 106 m/s
years ≈ 13.75× 109 years.

We guess the universe is about 13.75 billion years old. The current best estimate is

13.80 billion years!
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3. We let L,M, T denote the dimensions of length, mass and time respectively. We know

from the previous question that H has the units of inverse time, [H] = T−1, and the

speed of light clearly has dimensions [c] = L/T . We can also find the dimensions of G

from the dimensions of the Newton:

[N] =
ML

T 2
=⇒ [G] =

[N][m]2

[kg]2
=

L3

T 2M
.

Finally, since the dimensions of energy are [E] = ML2/T 2, the dimensions of energy

density (energy over volume) are

[ρ] =
[E]

[V ]
=

M

LT 2
.

Let’s look for an equation of the form

Hα = ηGβcγρδ

which has dimensions

1

Tα
= η

(
L3

T 2M

)β (
L

T

)γ (
M

LT 2

)δ
= η

(
L3β+γ−δM δ−β

T 2β+γ+2δ

)
.

This looks hard, but there is no mass or length on the LHS so

δ − β = 3β + γ − δ = 0 =⇒ 2β + γ = 0.

But then, matching powers of time on both sides,

α = 2β + γ + 2δ = 2δ.

The simplest way to satisfy all of these constraints is β = δ = 1 and α = −γ = 2. This

gives us the Friedmann equation

H2 =
ηGρ

c2
.

4. To find the density of dark energy, we can simply invert the Friedmann equation to
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make ρ the subject, and plug in the age of the universe calculated in part (a):

ρ ∼ c2H2

G
=

(3× 108)2

(6.67× 10−11)(13.75× 109 × 365× 24× 602)2
J

m3
≈ 7× 10−9

J

m3
.

Doing the full gravity calculation shows that η = 8π/3 ∼ 10, so our answer is too large

by a factor of approximately 10. Accounting for this, we guess ρ ∼ 10−9J/m3, which

matches the current best estimate to within an order of magnitude.1

Problem 2 — Donuts and Wobbly Orbits

1. Since the first particle travels on the red line (y-axis) and the second particle travels

on the blue line (x-axis), they will only collide if they both return to the origin at the

same time. But this means that both must travel an integer distance in the same time,

so for some natural numbers mx,my, and some time t,

vxt = mx, vyt = my.

Dividing one equation by the other, we find that the ratio of velocities must be a

fraction:
vx
vy

=
mx

my

.

If mx,my have no common denominators, then the first time the particles coincide for

t > 0 is when vxt = mx and vyt = my, so t = vx/mx = vy/my. If the ratio of velocities

is not a fraction, they can never collide.

2. This is just the first problem in disguise! The two particles get associated to the x

and y coordinates of the single particle. To begin with, suppose the particle starts at

the origin at t = 0. Let’s look for conditions which stop it from returning there. From

the first problem, it will never return to the origin as long as vx/vy is irrational. But

there is nothing special about the origin; the same reasoning shows that if the ratio of

1In fact, ρ is the total energy density of the universe, including things besides dark energy. While dark
energy density does not change with time, other forms of energy are diluted as the universe expands; from
the Friedmann equation, this means that H changes with time. Indeed, in the past H was very different.
However, dark energy constitutes around 70% of the total density, explaining why our estimate here is still
reasonably accurate. It also explains why H is approximately constant, at least in the current epoch of
expansion.
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velocity components is irrational, it will never return to any position it occupies.2

3. Kepler’s third law states that the radius of an orbit R and the period T (i.e. the length

of the year on the planet) are related by

T 2 = αR3

for some constant α which is the same for all planets. Thus,

TJupiter
Tearth

=

√
αR

3/2
Jupiter

√
αR

3/2
earth

= 53/2 =
√

125.

Since this cannot be expressed as a fraction, the results of part (2) show that the orbit

is non-periodic. This means that the earth should stay in a stable donut orbit forever!3

Problem 3 — Equation of State

1. If we denote r as the rate of bouncing off the ends, we achieve

time =
2L

v
=

1

r

∴ r =
v

2L

Given that P is pressure and ∆p is the change in momentum

P =
F

A

=
∆p

t
· 1

A

=
∆p · r
A

=
2mvr

A

2Something even more remarkable happens: the one-dimensional trajectory of the particle manages to
fill in most of the the two-dimensional surface of the donut! (It visits everywhere except a miniscule subset
of area zero.)

3In fact, Jupiter’s orbit is only approximately five times larger. But it remains true that a Jupiter year
is some irrational number of earth years, which is the key to the stability of the earth’s orbit.
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=
mv2

AL

=
mv2

V

Since A× L = V .

2. Still working in 1D, if we consider N number of particles:

P =

N∑
i=1

m

V
v2i =

m

V
N ·

 1

N

N∑
i=1

v2i


Considering that 1

N

∑N
i=1 v

2
i is the average velocity expression, v̄, we achieve

P =
Nm · v̄2

V

Since velocity is same in all directions in isotropic conditions in 3D:

mv̄2x = mv̄2y = mv̄2z =
PV

N
(Eqn. 1)

Ēk =
1

2
m
(
v2x + v2y + v2z

)
=

3

2
· 1

β

Where

mv̄2x = mv̄2y = mv̄2z =
1

β
(Eqn. 2)

By combining Eqn. 1 and Eqn. 2, we achieve:

1

β
=
PV

N
= kBT =

R

NA

T

PV =
N

NA

RT (where
N

NA

= n)

= nRT −→ PV = nRT
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Bonus. We know that the average kinetic energy is

Ē =
1

2
m
(
v2x + v2y + v2z

)
(Eqn. 1)

Using the probability expression given the question, we can compute the average en-

ergy:

Ē =

∑
i

Pi · Ei =

∫
dvxdvydvzE

e−β
1
2
m(v2x+v

2
y+v

2
z)∫

dvxdvydvze
−β 1

2
m(v2x+v

2
y+v

2
z)

The energy, E, above can be replaced with the kinetic energy formula and then split

into three different integrals.

Ē =
1

2
m

∫
dvxdvydvz(v

2
x + v2y + v2z)

e−β
1
2
m(v2x+v

2
y+v

2
z)∫

dvxdvydvze
−β 1

2
m(v2x+v

2
y+v

2
z)

=
1

2
m

∫
dvxdvydvz(v

2
x)

e−β
1
2
m(v2x+v

2
y+v

2
z)∫

dvxdvydvze
−β 1

2
m(v2x+v

2
y+v

2
z)

+ ...

=
1

2
m

∫
dvx(v

2
x)

e−β
1
2
m(v2x)∫

dvxe
−β 1

2
m(v2x)

·
∫
dvy(v

2
y)

e−β
1
2
m(v2y)∫

dvye
−β 1

2
m(v2y)

·
∫
dvz(v

2
z)

e−β
1
2
m(v2z)∫

dvze
−β 1

2
m(v2z)

+ ...

With some simplifying, we get

Ē =
3

2
m ·

∫
dv(v2)e−β

1
2
m(v2)∫

dve−β
1
2
m(v2)

=
3

2
m

(
1

2
· 2

βm

)
=

3

2
· 1

β

Relating this to Eqn. 1:

Ē =
1

2
m
(
v2x + v2y + v2z

)
=

3

2
· 1

β

And since v2x = v2y = v2z ,

mv2x = mv2y = mv2z =
1

β
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Problem 4 — Gone Fishin’

1. Since the lure is released with no vertical velocity, the time it takes to hit the water is

h+ w =
1

2
gt2 =⇒ t =

√
2h

g
.

The “muzzle” velocity is v = L/mw, so the range r of the lure is

R =
L

mw

√
2(h+ w)

g
.

2. Our previous answer for range is simply modified by making the replacement w → w+s,

but keeping the angular momentum L fixed:

R =
L

m(w + s)

√
2(h+ w + s)

g
.

We would like to maximise this distance. We can ignore the constants L, m and g/2,

write x = w + s, and focus on maximising

f(x) =

√
h+ x

x
.

Since this is positive, we can maximise this just as well by maximising its square as

the hint suggests:

F (x) = f 2(x) =
h+ x

x2
.

It’s not hard to show that this is a decreasing function, so that the best strategy is for

Emmy to introduce no slack at all. Let’s check that this is true, assuming 0 < x < z

and trying to show that F (x) > F (y), or even better, F (x)− F (z) > 0. We have

F (x)− F (z) =
h+ x

x2
− h+ z

z2

=
(h+ x)z2 − (h+ z)x2

x2z2

=
h(z2 − x2) + xz(z − x)

x2z2
.

Since z > x, we have z2 > x2, so the numerator is positive. The denominator is also
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positive, which means that the whole expression is positive! So the maximum range

occurs for s = 0.

3. If Emmy adds slack s during the swing, then the lure will undergo a change in height

∆y = 2w + s. This causes the lure to gain gravitational potential energy

∆U = mg∆y = mg(2w + s),

leading to a reduced release velocity v′:

∆K =
1

2
m[(v′)2 − v2] = −∆U =⇒ v′ =

√
v2 − 2g(2w + s).

Plugging in v = L/mw, the range is now

R =

√
2(h+ w + s)

g

[
L2

m2w2
− 2g(2w + s)

]
.

The question now is how to optimise this horrible looking expression! Once again, we

can square R, throw away some constants which sit out front, and maximise the very

simple function

F (s) = (A+ s)(B − s),

where

A = h+ w, B =
L2

2gm2w2
− 2w.

By completing the square, we can write

F (s) = −
(
s− 1

2
(A−B)

)2
+

1

4
(A−B)2.

Only the first part is relevant to figuring out the optimal s. The function F (s) will be

maximised for

s =
1

2
(A−B) = h+ 3w − L2

2gm2w2
.

Of course, for this to be positive, we require A > B, or equivalently

h+ 3w >
L2

2gm2w2
.
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