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1 Introduction

I’m anticipating that many of you, given that you come to physics circle, are interested
in pursuing an undergraduate degree in physics, or maybe another science. During your
undergraduate degrees you will most likely take part in some kind of research, and this will
be even more true if you go on to graduate school. Working on my own research project
was probably the most exciting and rewarding thing for me about my undergrad, although
I don’t think I would have guessed that if you’d asked me while I was in high school. I
became a graduate student so that I could keep doing research for a few more years.

Given my experiences with research as an undergrad and your almost inevitable future
encounter with research, I thought I would use this opportunity to tell you the story behind
the research I did as an undergrad. Occasionally I’ll pause to give you advice, which will
always be things I wish someone had told me when I was in your position, but mainly I will
just tell the story, so that you become familiar with what undergrad research looks like.

2 Second year - Quantum tasks

2.1 May, June and Quantum mechanics

I did my undergraduate degree at McGill University, in a joint math and physics program. It
was in the summer of my second year of undergrad that I first became involved in research.
In my mechanics course I had a TA, Igor Kozlov, whom I went to often to talk to for help.
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When the summer came around I asked him if he had any suggestions of who I might talk
to about a research position for the summer. He connected me with a professor, Keshav
Dasgupta, and he agreed to help me learn quantum mechanics that summer.

I got a desk in the Rutherford physics building, which was very exciting to me. Keshav
and I would meet every week or so. He set a goal for me for the first month, to be able
to explain the Bell inequalities to him. Bell inequalities were somewhere towards the back
of the quantum mechanics textbook he’d suggested, so I opened to chapter one and got
going. Keshav talked to me about entanglement, and how he felt that was the core of what
quantum mechanics meant, and told me there were some other researchers at the university
who studied entanglement very closely.

To understand entanglement, I first of all had to understand the basic structure of how
quantum mechanics works. While I was working with Keshav I learned this from the book
by Townsend [1], who borrowed their explanation largely from Feynman [2]. I’ll only give
you enough of a description of quantum mechanics as you’ll need to follow the research I
did later, but you can look at those references for details.

2.1.1 Stern-Gerlach experiments

I want to start getting you at least familiar with the quantum world by considering a
series of experiments. The experiments involve sending single electrons through pairs of
magnets, like I show below. I’m always going to have my electrons coming in from the left,
and traveling horizontally. The electrons can pass through two different arrangements of
magnets. Here we have electrons going through a vertical pair of magnets:

And here we have an electron going through a horizontal pairs of magnets:

– 2 –



Figure 1. Picture of the photographic plates used in the original Stern-Gerlach experiments. The
plate at left is with no magnets in place, the picture at right is with magnets. We see that the
electrons are split into two beams, one on the left and one on the right.

Of course, I could also consider putting my magnets at different angles, sending the
electrons in from different directions, and so on, but we focus on this simplified scenario to
cut out unnecessary details and make clear the key ideas.

If you pass an electron through a set of vertical magnets you find that some electrons
go up and some go down (none go straight). One way we can see this is by putting a
photographic plate that changes colour when an electron hits it. You find that there are
two splotches of color on the plate after you’ve sent a number of electrons through, like we
show in figure 1. If I block off one of the paths,
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only a fraction of the electrons I shoot into the magnets will come out the other end.
We can call the electrons that get through this up-type electrons. If we place a second set of
vertical magnets right after the first, we find that every electron that goes into the second
set of magnets will always come out. This makes sense - up-type electrons will go up again:

Similarly, electrons that went left when passed through horizontal magnets will go left
again when you pass them immediately through a second set of horizontal magnets. For
these reasons, it makes sense that we should think of electrons as coming in the four types
“up-left”, “up-right”, “down-left”, “down-right”. We will call this the classical model of the
electron, and give the different types labels that look like (↑,←), (↑,→), etc. We say that
these labels describe the state of the electron; they tell me about all the information that
the electron carries. At this point you should keep in mind that actually this classical model
is going to turn out to be wrong, as I’ll get to shortly.

According to our classical model, if I want to pick out the (↑,→) type electrons I should
set up the magnets:
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while if I want to pick out the (↑,←) electrons I should set up:

So far so good. But now lets put this model to the test. Apparently my magnets above
select out the (↑,←) type electrons. What happens if I pass my electrons through another
set of vertical magnets? The setup looks like this:

The classical model tells me that all my electrons should go up, but that is not what
happens! Instead, half my electrons go up and half go down - it’s like they’ve completely
forgotten about the first set of magnets that selected only up-type.

There are two questions you can ask here: 1) What is going on? How did the electron
forget that it passed a vertical magnet and went up? and 2) How do I change my model
to describe this? We are only concerned with the second question, but when you study
quantum mechanics more formally you can ponder the first one. What this experiment
tells me I should do is only keep track of up-ness OR down-ness, and that it doesn’t make
sense to keep track of both. So now an electron coming out of
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will be described by | ↑〉. Further, electrons that pass through several sets of magnets are
only described by the last one they passed through, so

will just be described by | ←〉.
The symbol | ←〉 also describes the state of the electron - it tells me everything there is

to know about what the electron will do when it passes through a set of magnets. This | ←〉
is not like the (↑,←) description of the electron though, since as we argued that description
says too much about the electron. It would say that the electron will definitely go up, when
really it has a 50% chance of going up and 50% chance of going down. While we called
the (←, ↑) type description a classical state, we call the | ←〉 a quantum state. The above
experiments give you some idea of how quantum states behave.
| ←〉 has a 50-50 chance of going up or down when passed through a vertical set of

magnets, which suggests | ←〉 is made from some kind of an equal mixture of up and down
types. To represent this we write

| ←〉 =
1√
2

(| ↑〉+ | ↓〉) . (2.1)

The type of “mixture” here, a superposition, isn’t like anything you’ve seen before. It
doesn’t for instance mean the left arrow is maybe an up type and maybe a down type but
you just don’t know yet. Instead, it means that the electron is really neither, until you
measure it, and the measurement pushes it into being one or the other. That will sound a
bit mysterious, and indeed it is given only what I’ve said here, but you’ll just have to run
with it for now.
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2.1.2 The quantum formalism

At this point I’m going to offer up whole the way that quantum mechanics works. From the
last section you know what a quantum state is, and you know that certain measurements
of a quantum system involve probabilities rather than definite outcomes. We’ve introduced
the idea of superposition a little bit. Hopefully this gives some justification for the rules
I’ll outline below. For a fuller justification you’ll need to look at the references I mentioned
earlier [1, 2].

Quantum states: A general quantum state is described by a superposition of basis states:

|ψ〉 = α| ↑〉+ β| ↓〉 (2.2)

The basis states correspond to the outcomes of a measurements. For an electron, we can
choose the bases states to be either up and down

| ↑〉, | ↓〉 (2.3)

or left and right

| ←〉, | →〉 (2.4)

because it is possible to measure whether the electron is an up-spin or a down-spin, or to
measure if it is a left spin or a right spin, but not to do both measurements (i.e. there’s no
such thing as a up-left electron).

A left state is an equal mixture of up and down states,

| ←〉 =
1√
2
| ↑〉+

1√
2
| ↓〉 (2.5)

while a right state is an equal mixture of up and down as well, but with a minus sign,

| →〉 =
1√
2
| ↑〉 − 1√

2
| ↓〉. (2.6)

Exercise 1 Express an up state as a superposition of a left and right state. That is, find
numbers α and β such that

| ↑〉 = α| ←〉+ β| →〉. (2.7)

Exercise 2 Express a down state as a superposition of a left and right state. That is, find
numbers α′ and β′ such that

| ↓〉 = α′| ←〉+ β′| →〉. (2.8)

Multiple systems and entanglement: The above description of quantum states is for a
single system, for example of one electron. How do we describe the state of two electrons?
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The state of one electron is written as a superposition of up and down states. The state
of two electrons is written as the sum of four possible states: electron 1 is up and electron
2 is up, electron 1 is up and electron 2 is down, etc. So

|Ψ〉12 = α| ↑〉| ↑〉+ β| ↑〉| ↓〉+ γ| ↓〉| ↑〉+ δ| ↓〉| ↓〉 (2.9)

If I give you a first electron that is described by

|ψ〉1 = x| ↑〉1 + y| ↓〉1 (2.10)

and a second electron described by

|φ〉2 = a| ↑〉2 + b| ↓〉2 (2.11)

Then if I want to described the both of them together I write

|ψ〉1|φ〉2 = (x| ↑〉1 + y| ↓〉1) (a| ↑〉2 + b| ↓〉2)
= xa| ↑〉1| ↑〉2 + xb| ↑〉1| ↓〉2 + ya| ↓〉1| ↑〉2 + yb| ↓〉1| ↓〉2 (2.12)

That is, I can factor out the brackets. If there are states |ψ〉1, |φ〉2 such that

|Ψ〉12 = |ψ〉1|φ〉2 (2.13)

then we say |Ψ〉12 is a product state. Otherwise we say it is entangled.

Exercise 3 Consider the state |Ψ〉12 = 1√
2

(| ↑〉1| ↑〉+ | ↑〉1| ↓〉2). Is this product or entan-
gled?

Exercise 4 Consider the state |Ψ+〉12 = 1√
2

(| ↑〉1| ↑〉2 + | ↓〉1| ↓〉2). Is this product or en-
tangled?

Measurements: To determine the probability of getting a certain measurement outcome
when you start with a specific quantum state |ψ〉, you hit the “ket” |ψ〉 with the “bra” 〈↑ |,
then square the resulting “braket” to give you the probability. For example,

probability of getting up when measuring state |ψ〉 = |〈↑ |ψ〉|2 (2.14)

Since measuring the up-downness of an up electron always gives outcome “up”, we have

〈↑ | ↑〉 = 1 (2.15)

and a measurement of a down electron always gives outcome “down” we get

〈↓ | ↑〉 = 0 (2.16)

“bra”s move over superpositions of kets in a linear way,

〈↑ |(α| ↑〉+ β| ↓〉) = α〈↑ | ↑〉+ β〈↓ | ↑〉 = α (2.17)

– 8 –



Exercise 5 Determine the probability of measuring up when you pass a left electron | ←
〉 = 1√

2
| ↑〉+ 1√

2
| ↓〉 through a vertical magnet.

Exercise 6 Determine the probability of measuring up when you pass an electron in the
state | ←〉 =

√
1
3 | ↑〉+

√
2
3 | ↓〉 through a vertical magnet.

Exercise 7 Any quantum state |ψ〉 = α| ↑〉 + β| ↓〉 will have |α|2 + |β|2 = 1. Why should
this be the case? What would go wrong if |α|2 + |β|2 was bigger than 1?

Operations: An operator is a thing that changes a quantum state. It is represented by a
sum of “ketbras”. For example

A = | ↑〉〈↓ |+ | ↓〉〈↑ | (2.18)

The bra part of the ketbras acts in the the same way as they do for measurements,

(| ↑〉〈↓ |+ | ↓〉〈↑ |)| ↑〉 = | ↑〉〈↓ | ↑〉+ | ↓〉〈↑ | ↑〉 = | ↓〉 (2.19)

Operators that change quantum states are always linear over superpositions, which means

A(α| ↑〉+ β| ↓〉) = αA| ↑〉+ βA| ↓〉 (2.20)

Exercise 8 Consider the operator | ↑〉〈↓ |+ | ↓〉〈↑ | introduced above. What is A| ↑〉? How
about A| ↓〉?

Exercise 9 What is A| ←〉? How about A| →〉?

Exercise 10 How would you write down A2 = AA as a sum of ketbras? How would you
describe (in words) what A2 does to quantum states?

2.1.3 Problems on quantum mechanics

A quantum state is one of our objects |ψ〉, which we’ve described in terms of the Stern-
Gerlach experiments and given the rules for working with above. We pointed out that
the quantum state describes all the information there is to know about, in our example,
the electrons spin. We often say that the quantum state |ψ〉 represents some quantum
information.

We can contrast quantum information with classical information. Classical information
is the stuff you usually think of when you think of information: the words of these notes
constitute classical information, the voice over the radio constitutes classical information,
and so on. The smallest unit of classical information is a bit, which is a symbol that can
take on one of two possible different values. Ie a bit b can be 0 or 1. This contrasts with our
quantum information |ψ〉 which can be in a superposition of two states, which we described
as up and down.

An important feature of classical information is that it can be copied. If you tell me a
bit, say 0, I can repeat 0 back to you three times: 000. Quantum information is different,
as the next problem shows.
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Figure 2. AdS/CFT explained to me on a napkin.

Problem 11 The no-cloning theorem: We have talked about the idea of quantum states,
and of operations that change states always being linear operations. In this problem we’ll
use that operators act linearly (see equation 2.20) on states to prove a theorem known as
no-cloning, which says that there is operation U that takes | ↑〉1|ψ〉2 to |ψ〉1|ψ〉2 for all
choices of |ψ〉.

We’ll start by imagining that there is such an operator that “clones” quantum states,
then we’ll show that such an operator would have to be non-linear. We can then conclude
that no such operator can exist in quantum mechanics. Call our cloning operator U . By
assumption we have that

U | ↑〉|ψ〉 = |ψ〉|ψ〉 (2.21)

1. Let’s suppose that |ψ〉 = | →〉. Since we’re assuming U is an operator that can clone
any state, we can do this. Then what is

U | ↑〉| →〉? (2.22)

2. Now use that | →〉 = 1√
2
| ↑〉+ 1√

2
| ↓〉 and ask again what U | ↑〉| →〉 is.

3. Does your answer from parts 1 and 2 agree? Use these two results to argue that there
can never be such a cloning operator U .

2.1.4 Back to the story...

Eventually Keshav and I moved on from quantum mechanics, and he started having me
learn about quantum field theory. I was excited to tackle quantum field theory, which is
the core framework in which current physics research is done. He wanted me to learn a
little quantum field theory and to do a project with me on supersymmetry.

One day Keshav invited me to go to a coffee shop with him to chat. I thought that was
pretty exciting, and Keshav even bought me a slice of chocolate cake while we were there.
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I can’t remember a ton of what we talked about, but I know I asked him what the Institute
for Advanced Study was like and that he tried to explain something called “AdS/CFT” to
me. I was pretty confused, but it all sounded very cool. I still have the napkin he drew on
while he was trying to explain to me (figure 2). Nowadays I actually work on AdS/CFT,
so I did end up understanding what Keshav was talking about that day in the coffee shop,
it just took me 5 years to do.

Around that time I contacted someone who was studying entanglement more closely,
specifically Patrick Hayden, as Keshav had encouraged me to do. I remember emailing him
and sweating over the details of my email, being very nervous to knock on his door when I
went to meet him, and trying to rehearse in my head what I’d say to try and convince him
I was clever enough that he should work with me. I don’t think it was any of the things I
thought would impress him that actually did, but for whatever reason he decided we should
work together.

2.2 July, August and Quantum Tasks

Patrick told me he’d heard an interesting talk while visiting the Perimeter Institute in Wa-
terloo (https://www.perimeterinstitute.ca/), and thought there might be something
in that direction we could work on. So he sent me off with a paper to read, and a plan to
meet in a week or so to discuss project ideas.

My intention was to work simultaneously on the project with Patrick and on the quan-
tum field theory project with Keshav, but that’s not how things ended up going. I drifted
and spent a larger and larger portion of my time on the project with Patrick, and eventually
officially let go of the other project. Keshav’s project required I learn a lot more before I
could get started, and I don’t think I was ready for some of the more difficult material. It’s
important to take reasonably sized steps, and Patrick’s project really was a better choice
for me at the time. That said, I wish I’d kept in better touch with Keshav and followed up
on his project, even if maybe that had to happen after I’d matured a bit and taken a few
more classes. Nowadays I try and always to split my time between reading to advance what
I know and working on whatever research project I have going on. It’s important to do
both, but for me at least I find the research more exciting and I tend to get out of balance.

The paper Patrick asked me to read was [3], and I also looked at the closely related
paper [4], both by someone at Cambridge named Adrian Kent. It all sounded interesting,
but I had no idea what a good project might be. Patrick did though, and in fact he choose
what I think was an excellent project for me. It didn’t have too much overhead, meaning I
could get started reasonably quickly, but it was also meaningful, and I learned a lot in doing
it. Sometimes beginning students are keen to start doing research on the biggest problems
in the field, which usually involve some heavy physics to get too. It’s great to be excited
about those problems, but sometimes a more strategic approach is called for. Rather than
the biggest problems, sometimes it’s good to go after manageable smaller projects that you
will learn a lot from and be more likely to contribute to.

Before I get to describing the project, it’s useful to introduce the idea of a spacetime
diagram. A spacetime diagram is a map, but while a normal map describes places, which
have a certain position, a spacetime diagram describes events, which have a position where
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Spacetime diagrams

Spacetime diagrams are maps, but the points in the map don’t correspond to posi-
tions in space: they correspond to positions in space and time. We usually label the
space direction along the horizontal axis, and the time direction vertically:

t

x

(t1, x1)

The path an object traces out as it moves through spacetime is called a worldline.
The worldline for an object at rest is just a straight, vertical, line.

t

x

As the line tilts further and further over, it corresponds to the object moving faster
and faster. We usually choose our units of time and space to be such that light goes
at 45 degrees:

t

x

Since nothing goes faster than light, no worldlines can be steeper than 45 degrees.

To choose the units correctly, we can take the horizontal axis to be marked in terms
of meters. Then, the vertical axis should be marked in spacings of how long it
takes light to go one meter, which is 1 meter divided by the speed of light, which is
0.33× 10−8 s.

Figure 3. Spacetime diagrams

they occur and a time at which they occur. I’ve summarized some features of spacetime
diagrams in box 3.

Exercise 12 A car moves at 1/4 the speed of light in the x direction, then after traveling
a distance L stops and immediately proceeds in the opposite direction at 3/4 the speed of
light. Draw the cars world line on a spacetime diagram.

Recall that, according to special relativity, nothing may travel faster than the speed of
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light. Actually, the somewhat more precise way to say this is to say that no information
may travel faster than the speed of light1. In the language of a spacetime diagram, this
means that information made available at a point p may travel only into the future light
cone of p:

Recall that classical information, like a single bit b, can be copied an arbitrary number
of times. Because of this a bit b initially located at point p can then be made available
everywhere in p’s future light cone. As we learned in problem 11, quantum information
is different: it cannot be copied, and so cannot be made to fill the future light cone of p.
Quantum information moves through spacetime in a much more restricted fashion.

Adrian Kent, whose paper I was reading, had come up with an idea he called “summon-
ing” that related to how quantum information can move through spacetime. To talk about
what summoning is, it’s useful to introduce two people, Alice and Bob. In summoning, Bob
gives to Alice a quantum state which we’ll label by |ψ〉. Then, sometime later and at some
other place, he asks for the state back. He doesn’t ask for it back right away, but instead
specifies another time and place where Alice should give it back. In general, there can be
many times and places where Bob might request the state be returned.

Using the idea of a spacetime diagram, we can specify a summoning task more precisely.
The place where Alice receives the quantum state from Bob we call the start point, s. Any
point where Alice might have to return the state we label ri, while any place that she might
receive instructions on where to return the state we call ci. To keep things simple, we
specified that the instructions take a simple form: at each ci Alice receives a single bit bi
which could be either 0 or 1. If it is 0, then it means the state does not need to be returned
at ri, while if it 1 then it means the states does need to be returned at ri. My research
problem was to understand for which choices of s, c1, ..., cN , r1, ..., rN could the task be
completed with a perfect success rate by Alice.

Kent had thought about some summoning tasks, and actually proven a theorem saying
that you couldn’t do certain ones. We’ll reproduce this theorem in the next problem.

Problem 13 The no-summoning theorem: Consider the summoning task shown in
figure 5. In this problem we will argue that it is impossible to complete this task with a

1This is more precise because, for example, an objects shadow can travel faster than the speed of light,
but the moving shadow cannot be used to convey information.

– 13 –



c1

r1

c1

r1

Figure 4. A simple example of a summoning task. At s Alice receives a quantum state |ψ〉. At
each spacetime point ci she receives a bit bi which is either 0 or 1. Alice must return the state to
the ri such that bi = 1. Alice is guaranteed that exactly one of the bits will be one.

c1

r1

c1

r1

Figure 5. The type of summoning task that Kents “no-summoning” theorem says is impossible.

perfect success rate. To argue this, we will first assume that it is possible, and then show
that this results in some kind of non-sense. We can then conclude that actually the task
must be impossible.

Notice that the return point r1 is outside of the light cone of the call point c2, and the
return point r2 is outside of the future light cone of the call point c1.

1. What classical information does Alice have available to her at r1? What about at r2?

2. Usually, Alice gets a call at c1 OR at c2. Imagine though that we played a trick on
her, and asked for the state back at both c1 AND c2. If Alice is running her perfect
protocol that always completes the task, what happens when we play our trick?

3. Use the results of a previous exercise or something you’ve learned in these notes to
conclude this is nonsense, and so it must be that the task is impossible

The no-summoning theorem deals only with a simple case. Specifically, it concerns
the case where there are two “call-reveal” pairs. It already says something interesting
though, specifically that the no-cloning theorem restricts how quantum information can
move through spacetime.

The research problem Patrick gave to me was to understand exactly when an arbi-
trary summoning task can be completed. So we imagine now we have n call reveal pairs
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(c1, r1), ..., (cn, rn), arranged arbitrarily in spacetime, and we want to know when we can
successfully complete the task.

Problem 14 Pause here and think about how you might go about starting to solve this
problem. What would you try first? Who would you talk to? What resources would you
make use of?

One of the first things I did to try and understand this problem was to think through the
case with just two pairs more carefully. The no-summoning theorem tells you it is impossible
to complete the task under certain circumstances, but are those all of the circumstances
where it’s impossible? For example, do I need r1 to be connected to r2? Or that c1 be
connected to r2? Or that c1 be connected to c2? As well, what about the start point s?
How does it fit in?

If we think through the proof of no-summoning again, we can work out that what was
bad there is that neither of the call points connected to the other reveal points. So for a
task to be possible we need at least one of c1 → r2 or c2 → r1. AS well, if their was a reveal
point ri which is outside the future light cone of the start point s, then it’d be impossible
to get the state from s to ri, so the task would be impossible. We need then that s → ri
for all ri.

To think about this another way, I constructed what I called the “causal diamonds”2.
The causal diamond Di associated with a call-reveal pair (ci, ri) I defined as the intersection
of the forward light cone of ci with the backward light cone of ri. That sounds a bit
confusing, but the pictures make it obvious. For example the causal diamond of the call
reveal pair:

c1

r1

is just the grey region

c1

r1

The causal diamond definition was useful in that it cleaned up my notation a bit: instead of
talk about call-reveal pairs (ci, ri) I could just talk about diamonds Di. The diamonds also
had an important interpretation though: they represent the region where you both know

2By complete coincidence, this term was already standard in the field and used to denote the exact same
thing, although people had defined it from a different starting point.
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whether or not you’re supposed to bring the state to that reveal point (because you’re in
the future light cone of the call point) and you can actually do something about it (because
you’re in the backward light cone of the reveal point).

Intuitively, it seems like you need to bring the state into each diamond, check if you need
to return the state there, and then possibly move onto the next diamond. Consequently, I
began to believe that was needed to complete a summoning task successfully was to bring
the state into each diamond, and in turn I thought that meant there should be a path
through spacetime that brings you through each diamond.

I didn’t think this for long though, because I remembered an example Adrian had
included in one of his papers [4]. He considered a summoning task with two diamonds, by
in two spatial dimensions instead of the 1 I’ve been drawing,

s

c1

c2

r1

r2

y

x

t

Notice that the horizontal and into the page directions are space directions, and the time
direction still runs up the page.

You can notice that the example above in 2+1 dimensions has everything that we said
we needed for a summoning task with two diamonds to be possible: it has both its reveal
points in the future light cone of the start point, and it has one of its reveal points in the
future light cone of one of its call points (in this case c2 → r1). Nonetheless, it seems like I
can’t do this task: suppose I start with the quantum state near s. Starting at s, there’s no
path I can send the state on that will go through both diamonds.

In fact though, Adrian pointed out that you can do this task! Doing so requires a new
tool called “quantum teleportation” that I haven’t introduced to you yet, but it’s not too
hard to understand. Here I will just give you the functional description of what happens
in quantum teleportation. Later, you can go on to understand teleportation at a deeper
level, but it’s an important skill to to be able to work with a preliminary description of
something.

So here’s the basic picture of how quantum teleportation works. Alice, say here on
Earth, holds a quantum state |ψ〉1. There is also an entangled state |Ψ〉23, with the 2
electron held by Alice and the 3 electron held by Bob. Alices goal is to transfer the state
|ψ〉 she holds on the 1 electron onto the 3 electron. To do this, she makes a certain
measurement of the 1 and 2 electrons, which gives her a measurement outcome labeled by
a, b, c or d. She then send her measurement outcome, which is classical information, to Bob.
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Figure 6. Comic reproduced from XKCD, see https://xkcd.com/465/.

Bob then applies an operator to the 3 electron that depends on the measurement outcome
he received, and after applying that operator he holds the state |ψ〉3, as was desired.

We can also explain this in a picture:

Notice that in the teleportation procedure information never travels faster than the speed
of light, and there already needs to be an entangled state distributed between where you
are and where you want to go, so it’s not quite the stuff of Star Trek fame (see figure
6). Nonetheless quantum teleportation is very useful for a variety of reasons. One reason,
which was actually noted in the original paper introducing teleportation [5], is that Alice
need not know where Bob is in order to send him her quantum state. Since what Bob needs
to send to Alice, she can actually send it in all directions. Without teleportation Alice does
need to know where Bob is, because she can’t copy the state and naively can’t send it in
all directions.

This observation that teleportation lets Alice send her state without knowing where
Bob is located is actually the key to completing the summoning task in 2 spatial dimensions
I gave above. Recall that the task was
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and we noted that the difficulty in completing it is that there is no path starting at s that
passes through both diamonds.

To complete this task using teleportation, we do the following. Before the task starts,
take an entangled state |Ψ〉23 and share it between s and c2. Then, as soon as Alice receives
the state, she teleports the state |ψ〉1 that she receives by measuring the 1 and 2 electrons.
She then sends her (classical) measurement outcome to both r1 and r2. Meanwhile, over
at c2, Alice looks at the call she gets. If the call is a 1, she send the 3 electron to r2. If the
call is a 0, she sends the 3 electron up to r1. The end result is that both the measurement
outcome from the teleportation and the 3 electron end up where ever the state is supposed
to go. Since Alice can use the 3 electron and the measurement outcome to produce |ψ〉, she
succeeds in completing the summoning task.

We argued earlier that we need, for the task to be possible, that 1) both the reveal
points to be in the future light cone of the start points and 2) one of the reveal points to
be in the future light cone of the other call point. Now we know that actually we can do
the task whenever both of those conditions are true, since the teleportation style protocol
will always work. This totally characterizes for us summoning tasks with two diamonds:
we know exactly when they are possible and when they are impossible.

2.3 Moving upward to three diamonds

Next I moved on to the cases with three diamonds. The first thing you can notice is that
whenever two diamonds are disconnected you can apply the no-summoning theorem again:
the no-cloning theorem can be used to tell you that a task with any two diamonds being
disconnected is impossible. Then it remained to think about the various ways you can
connect up three diamonds. All the ways, at least up to relabeling what you call D1, D2

and D3 are these:
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The case on the right I could figure out how to do, so I knew that one was possible.
The way to do it involves using the teleportation protocol again, and we’ve already seen
something like that, so I won’t describe this case. The other case, the case where the
connections go in a loop, I didn’t see any way to do. On the other hand the no-summoning
theorem didn’t tell me it was impossible, so I was a bit confused with this one. One
possibility I considered for a long time was that you could never actually get such an
arrangement of diamonds by choosing call and reveal points in a spacetime. Instead, I
thought that whenever you had a loop, one pair of diamonds in the loop would actually
always be connected in both directions. I called this the “loop lemma”.

In fact, I could argue roughly that this was the case if I worked with only one spatial
dimension. For some reason I didn’t really think too hard about whether or not that idea
would still be true in two spatial dimensions. Probably that was because I had an exciting
idea about how to solve the problem if the loop lemma was true, and I was busily pursuing
that idea.

At that time I was organizing a series of talks for and by undergraduates. The talks
were in math, physics and computer science, so we got an interesting mix of topics. Hosting
the talks was also a useful way of getting a bit of a community going during the summer
months. A lot of people were away, and the usual social circles were all disrupted, so giving
everyone who was still there an excuse to get together was good and got us all talking.
There were some good talks, but more useful was talking to people before and after, about
the talks and about whatever else.

Since I was the organizer I’d written a talk that I could use to fill in any week that
might come along where I couldn’t find a speaker, or if someone canceled. Such a week
came around towards the end of the summer. Before I gave the talk I mentioned to Patrick
that I was giving it, I think just in the context of asking him how I could best explain
something. To my surprise he asked me when and where the talk would be. I told him, but
pointed out that though he was super welcome to come, it’d otherwise just be undergrads.
He said he didn’t mind and he’d see me there.

Before giving the talk I was kind of nervous. After all, I hadn’t actually solved my
problem at this point. What was I supposed to tell them about? And this with my
supervisor in the room! But I went ahead and gave the talk anyway. I explained (as best
I understood it then) how quantum states worked, how teleportation worked, and much of
what I’ve said above. Then I got to the point about three diamonds and diamonds with
cycles of connections. I said that I thought that I thought everytime you had a cycle you’d
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Figure 7. The email Patrick sent me after he attended the talk I gave for my fellow undergrads.
Patrick points out that the audience members disbelief of my loop lemma was correct - the loop
lemma is false. I follow up by pointing out an example with just three diamonds. Reducing it to
three diamonds means we have a problem that has a loop and has every diamond directly connected.

also get the extra connection, and argued you could never get one with only one spatial
dimension, and started to go on to explain how I thought things would work if you assumed
that. At that point though someone in the audience put up their hand and asked if I had
a better reason to believe my loop lemma. I said no. He said he didn’t believe me then.

Later that night Patrick emailed me (figure 7). He’d taken that guy in the rooms
disbelief seriously, and actually figured out that you can get cycles! The picture he sent me
was a cycle among four diamonds, but we quickly saw that you could actually do it with
just three. The cycle on three looks like this:
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This was a lesson to me. I’d gotten caught up in the path I was pursuing, and brushed
under a rug an assumption I’d made earlier on that might have been wrong. It’s definitely
ok, and essential strategy even, to pretend for awhile that somethings true and see what
the consequences would be, and then to come back later and check your assumption. It’s
just that while you do that you have to not get too swept up in what your doing. At the
back of your mind you have to stay open to the possibility that the assumption you made
way back when is wrong.

I learned a second lesson too, which was that even though Patrick, a very well respected
expert in the field, had been at my talk, it had ended up being an undergrad who was just
hearing about the problem for the first time that made the most useful contribution that
day. And all he had to do was be a bit stubborn and push for a good reason for me to make
my assumption!

So how could we deal with these summoning tasks that had loops in them? I tried
using teleportation in various ways, but nothing seemed to work. It was possible they were
just impossible to complete, but I didn’t have any way I might prove that if it was true. I
kept looking for ideas, either of how to prove it was impossible or of how to do it.

I recalled something I’d learned about quantum states that I thought might be useful.
While they can’t be copied, they can be split up into different parts in what is called an
error correcting code. I can’t actually recall, and nothing in my notes seems to hint at, how
I first heard about quantum error correcting codes. Most likely though it was Patrick who
suggested to me that they might be relevant and suggested I look into them. Certainly it’s
good to have someone with a broad expertise around who can point you towards these sorts
of things!

I’ve introduced error correcting codes for classical information in the next problem.
Afterwards I’ll describe quantum error correcting codes.

Problem 15 Error correcting codes An error correcting code is a way to store infor-
mation in a way that protects against losses. For example, suppose I have some classical
information, say a single bit b which can be 0 or 1, and suppose there is some probability
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that the thing I am storing this bit on might get lost or erased. What should I do? Well,
the simplest thing I could do is copy the bit a few times,

0→ 00

1→ 11 (2.23)

Then, if I lose any one bit, I can just look at the other one. The information we’d like to
store we call your logical state, while the encoded, larger number of bits we call the physical
state.

Design an error correcting code that stores two bits worth of logical information in three
physical bits. That is, fill in the blanks of the table

00→ ___ (2.24)

01→ ___ (2.25)

10→ ___ (2.26)

11→ ___ (2.27)

and do so in a way that guards against erasing any one of the physical bits.

As mentioned in the problem above, the mast basic way to make a classical error
correcting code is to copy the logical bit a few time, ie send b → bbb. What if we want
to make a quantum error correcting code? Specifically, I want to store the state on one
electron, say |ψ〉1, onto 3 electrons in some state |Ψ〉123 in a way that protects against losing
one electron. That is, I should be able to recover |ψ〉 by starting with electrons 1 and 2, or
2 and 3, or 1 and 3. The naive way to do this would be to send

|ψ〉 → |ψ〉|ψ〉|ψ〉 (2.28)

but as we learned earlier, this is impossible! We can’t copy a quantum state.
What are we to do then? The trick is to store the quantum state in a way that allows

you to lose one electron, but never allows more than one copy of the state to be produced.
This at first seems impossible, but actually its not so hard to imagine: we encode the state
|ψ〉 into the state of 3 electrons in a way that allows |ψ〉 to be recovered from electrons 1
and 2, or electrons 2 and 3, or electrons 1 and 3, but not from any one electron alone. Since
you always need two electrons to make the original quantum state, and there are a total of
three electrons, you can’t make more than one copy.

Exercise 16 Quantum error correction Suppose that we encode a quantum state into
n parts such that any k of them can be used to get |ψ〉 back - this is called a (((k, n)))

scheme. What is the smallest that k can be?

Now we are ready to come back to the case with three diamonds and a cycle,
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We can use our error correcting code with three parts such that any two can be used to get
the state back (our ((2,3)) scheme) to complete this. I leave this for you to do!

Problem 17 We will use the ((2, 3)) scheme to design a protocol that successfully completes
the cyclic task with three diamonds.

1. You’ve received the state at s and promptly turned it into three shares in a ((2, 3))

error correcting code. Now you need to decide where to send each share. Should you
send one share to each diamond, or two shares to one diamond, or? Notice that each
diamond is the same as every other: it connects to one diamond and is connected to
from one other diamond. Use this fact to argue you should send one share to each
diamond.

2. Now you’ve brought one share to each diamond. At the ci you receive the information
bi, and you can use this information to decide where to send your share. There are
two cases: b = 0 and b = 1. Decide where to send the share in the error correcting
code in each case, and argue this always completes the summoning task.

3. Bonus: What happens in the protocol you’ve designed if two of the b’s are 1? If you
know for sure you will get exactly two b’s with b = 1, is there a protocol that will
always result in the state being handed over at one of the diamonds where b = 1?
What if you’re not sure if there will be 1 or 2 places where b = 1?

Now that I knew I could do this task, I understood exactly when you could do tasks for
up to three diamonds: summoning was possible (for up to three diamonds) if and only if 1)
all the reveal points are in the future light cone of the start point and 2) every diamond is
connected (and which direction they’re connected in doesn’t matter). I remember feeling
very excited when I realized this might be how it worked for all numbers of diamonds,
because it would be such a nicely simple answer if it was true. I wrote down my conjecture:

Conjecture 18 A summoning task with any number of diamonds is possible if and only if
the following two conditions hold

– 23 –



1. All the reveal points are in the future light cone of the start point

2. Every diamond is connected to every other diamond

I had what I thought was the right idea in hand, but I didn’t know how to prove it for more
than three diamonds and the end of the summer was coming near...

3 Third year - Keeping at it

The summer ended and I still hadn’t proven my conjecture. It was disappointing. Patrick
encouraged me to keep thinking about it during the semester, but I worried I wouldn’t have
the time given all the classes I’d be taking. I did keep thinking about it, even if I hadn’t
really intended to. I found I’d think about in the metro, or in a boring lecture, or whenever,
and sometimes I’d find a bit of time on a weekend to work on it. I had the bad habit too
of thinking about it while trying to fall asleep, which kept me up.

I remember once thinking I’d figured out how to prove my theorem while sitting through
a lengthy electricity and magnetism lecture. The excitement of thinking I’d had it and the
disappointment of realizing I didn’t wasn’t honestly pretty serious emotional turmoil. I
was deeply invested at that point. I think I had some amount of useful insight that time
though, so I don’t think that idea was a total loss.

I had another flash of insight riding home from my girlfriends on the metro one night.
I remember alternately running and walking home from the metro station, trying to keep
the somewhat vague (but, I was convinced, important) notion in my head until I could get
to a sheet of paper and start writing. I worked at my kitchen table until 2 or 3 in the
morning I think, trying get it to work out, and then when I did think I had it checking it
and rechecking it. I wrote Patrick an email with my idea, but then went to bed without
sending it. I didn’t trust my tired self not to be making some embarrassing mistake. In
the morning I checked it yet again and sent it off (see figure 8). I’d titled the email “I have
it! (I think)” and written at the end of it “I’m excited, but I am remembering that even
when I think I have it, it sometimes happens that I actually don’t. Let me know what you
think.”

That night Patrick got back to me with a short email saying he’d have a look and that
it seemed interesting. He was at a conference in Singapore at the time, so he was a bit
occupied. While I waited for a reply I went into campus and found whoever I could and
explained my (supposed) result to them, to see if they could find an error. No one did, so
it was so far so good. The next morning Patrick got back to me: “Absolutely beautiful. It
should work, as far as I can tell!”

4 After the proof and some reflections

After Patrick’s email to me we still had to write up our result. Since Patrick could probably
do a better job of it than I could, I let him do the writing, but he had me look over it and
give him feedback. I also wrote my own version of the paper independently before I’d seen
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Figure 8. The “I have it!” email exchange between Patrick and I. The first email is the bottom
one, the reply is above.

his, just to give it a try and learn. Comparing his version to mine was quite useful in
learning how to communicate clearly.

Writing the paper was more of a process than I realized it would be. There was a lot
of back and forth, and while we wrote we thought about adding sections that we’d have to
develop new results for. Writing the result can really clarify what’s missing, and it does
often happen that you end up doing a lot of extra research while you try and write. In our
case we ended up deciding that our result stood on its own and we wouldn’t add anything,
so we actually got it out pretty quickly, within about one month of the “I have it!” email.
Our paper appeared on the arXiv [6], and was published in a journal some time later.

Aside from writing the paper, there was a lot of other communicating of our result that
we still had to do. Patrick was very generous with me in funding my travel to conferences
to talk about our work. I went to the Canadian Association of Physicist Undergradu-
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ate Conference (CUPC) (see https://www.cap.ca/congress-conference/cupc/), a local
conference held for graduate students, and even to the core annual conference held in our
field, which was in Beijing that year. I had another useful learning experience in preparing
the talks for the CUPC and the grad student conference, and in watching Patrick give his
talk in Beijing.

Every time I went to a conference to talk about my results I was nervous about some-
thing. At the undergrad and grad student conferences I was worried people would think
my result wasn’t important. At the Beijing conference I was worried I’d seem naive to all
the profs there. The climate at the undergrad conference was maybe a little competitive,
I felt sometimes like people were trying to show off and there were awards given for best
poster and best talk, but at the grad student conference and the high level conference in
Beijing there was really no competitive atmosphere (best poster and talk awards are purely
undergrad phenomena). And the Profs didn’t look down on me as naive, they knew I was
naive (I was an undergrad!) and were impressed I’d been able to do some interesting work
and expressed their hope for my future.

I’ve often reflected on the haphazard series of connections that led me to meet Patrick,
and all the consequences that has had. In many ways the haphazardness makes it all feel
very lucky, and indeed I do think I was very lucky to come across the people that I did and
have the opportunities that I did. At the same time, there’s a lot you can do to set up good
connections in the academic world. In the context of being an undergrad who’s interested
in research, I think one thing my story shows is the importance of your TA’s. It’s the TA’s
that you’ll interact with most often and most directly, and they can sometimes directly offer
you research to do or connect you with professors. Igor helped me out tremendously when I
was an undergrad, and now that I’m a grad student and a TA I’ve had the opportunity see
things from the other side. I am definitely on the watch for good undergrads I can recruit.
I like helping undergrads out, because I was one once and I know what it’s like, but also
because a good undergrad can be really useful to me!

Aside from the good luck, I also did work very hard that summer. I put in a lot of
hours. And I benefited from a strong community of people around me. Giving that talk for
instance pulled me out of a blind alley and got me unstuck. I also benefited from many small
conversations with many different people that summer. Those could range from explaining
things I’d learned from my quantum textbook to someone, to discussing approaches to my
research problem, to seeking out help with bits of mathematics that I wasn’t familiar with.
All those conversations help keep things moving.

Another thing that strikes me looking back is the surprising interconnections in the
topics of research I’ve worked on. For example, a paper I published in February of 2019 [7]
is closely related to my first ever paper [6] from the fall of 2012. It’s also closely related to
a final project I did for a class in 2013. So you should certainly keep this in mind as you do
research: every past project you work on is something that can potentially be connected
to what you’re working on now, and something that can potentially give you new ideas for
what to do next.

As I go through my career, I keep being pleasantly surprised that I’m able to contribute
meaningfully to the forefront of research. I worried as an undergrad and when I was in high
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school that I wouldn’t be able to, because I didn’t think (and still don’t think) I’m the
smartest person around. What could I contribute that the smartest person in the room
couldn’t? It turns out though that this line of thinking is wrong. Hard work and lots of
communication count for a lot. Another way contributions happen though is just from your
own unique path. Sometimes it takes a person who, just by luck, happened to know about
thing X that no-one would have guessed would be relevant. Sometimes it takes a quirk of
someones personality or quirk in their take in how science should proceed. It’s true I’m not
the smartest guy in the room, but every once in a while there’s a problem that requires my
own weirdness to solve.

5 Additional problems

Problem 19 More on classical error correcting codes In problem 15 we began to
study classical error correcting codes, which are ways of storing classical information that
protect it against errors. Here we will study a somewhat more complex example of an error
correcting code called the Hamming code. It will let us store 4 logical bits into 7 physical
bits.

We will work up to designing and understanding this code.

1. Lets start by revisiting the code from problem 15 and thinking about it in a new way.
Recall that we wrote

00→ ___ (5.1)

01→ ___ (5.2)

10→ ___ (5.3)

11→ ___ (5.4)

and found that we could fill in the table on the right always corrected for any single bit
error. Although trial and error is a perfectly good way to solve this, there is actually
another way. To see this, draw a Venn diagram with two circles:

Call the two logical bits x1 and x2 and put them into the center of the two circles.
Then calculate the third bit that sits in the overlap of the two circles, according to
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x1 ⊕ x2 = p1, where ⊕ means you should follow the rule

0⊕ 0 = 0

0⊕ 1 = 1

1⊕ 0 = 1

1⊕ 1 = 0

Notice that 1⊕ 1 = 0, not 1! This is called addition “mod” 2, because everytime your
sum gets up to 2 you go back to zero.3. Use x1, x2, p1 as your three physical bits and
fill in the table above (this might be different than how you filled it in before).

2. Using your Venn diagram, how can you fill in the x1 bit if you know p1 and x2? How
about x2 from p1 and x1?

3. Because its possible to get back x1 and x2 when any one bit is erased from the Venn
diagram, this gives us an error correcting code that stores two logical bits into three
physical ones, and corrects the erasure of one bit. Notice that we could also use our
Venn diagram in a backwards way: we could call p1 the logical bit. Then we notice
that erasing any one of x1, x2, p1 still allows us to construct p1 again. So we can also
view this as an error correcting code that stores 1 logical bit into 3 physical ones!

4. Now, use a Venn diagram with three circles and the ⊕ rule to store 3 logical bits into
7 physical bits:

How should we determine p4 from the x’s? Convince yourself that in your Venn
diagram you can erase any bit and still recover x1, x2, x3.

5. Now use your Venn diagram with three circles in the backwards way: convince yourself
you can construct any of the p’s even after any one bit has been erased. This means
you can actually store 4 logical bits into 7 physical ones!

3You already know how to add mod 12: 3 hours past 11:00 is 2:00.
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