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Problem 1 — Turbulence in a Tea Cup

1. Let [·] denote the dimensions of a physical quantity, and M,L, T mass, length and time

respectively. Then energy per unit mass per unit time has dimension

[ε] =
energy

MT
=
M(L/T )2

MT
=
L2

T 3
,

where we can remember the dimension for energy using kinetic energy, K = mv2/2.

(The dimension does not depend on what form of energy we look at.) The dimensions

for the remaining physical quantities are easier:

[`] = L, [ρ] =
M

L3
, [∆v] =

L

T
.

Since mass does not appear in [ε], and the viscosity is not involved in this type of

dissipation, the density ρ cannot appear since there is nothing besides µ to cancel

the mass units. We can easily combine ` and ∆v to get something with the correct

dimension, and deduce an approximate relationship between ε,∆v and `:

[(∆v)3]

[`]
=

L3

LT 3
= [ε] =⇒ ε ≈ (∆v)3

`
.

2. Viscosity has dimensions

[µ] =
[N][s]

[m2]
=
MLT

T 2L2
=

M

LT
.

We can combine with ρ and ` to get something with the dimensions of time; ∆v is not
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involved since friction is independent of the eddies. The unique combination with the

right units is
[`2ρ]

[µ]
=
L2 ·M · LT
L3 ·M

= T =⇒ τdrag =
`2ρ

µ
.

3. Returning to eddy losses, its easy to cook up a time scale from the basic physical

quantities ` and ∆v:

τeddy ≈
`

∆v
.

In order for dissipation of energy by the eddies to dominate, we require τeddy � τdrag,

that is, energy is much more quickly dissipated by the eddies than by friction. Com-

paring the two expressions, we find

`

∆v
� `2ρ

µ
=⇒ `ρ∆v

µ
= Re� 1.

4. By assumption, the rate of energy dissipation ε is the same for all eddies, so the

reasoning in part (1) gives ε ≈ (∆vλ)
3/λ. Rearranging, we have ∆vλ ≈ (ελ)1/3. We

now set Reλ = 1 and solve for the minimum eddy size λmin:

1 = Reλ =
λρ∆vλ
µ

≈ λ4/3ε1/3ρ

µ
=⇒ λmin ≈

(
µ

ε1/3ρ

)3/4

=

(
µ3

ερ3

)1/4

.

5. There is a cute shortcut here. First, the previous question tells us how Reλ scales with

λ:

Reλ ≈
ε1/3ρλ4/3

µ
= αλ4/3,

where α is a constant independent of λ. But the Reynolds number is simply the eddy

Reynolds number for λ = `, Re = Re`, and the eddy Reynolds number is unity for the

smallest eddies. Hence,

Reλmin
≈ αλ

4/3
min = 1, Re ≈ α`4/3 =⇒ λ

4/3
min ≈

`4/3

Re
.

For our turbulent coffee, ` ≈ 10 cm and Re ≈ 104, so we estimate a minimum eddy size

λmin ≈
`

Re3/4
≈ 10 cm

103
= 0.1 mm.
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Problem 2 — Shallow Water makes Tall Waves

1. Let’s write the dimensions of g and ρ in terms M,L, T :

[g] =
L

T 2
, [ρ] =

M

L3
.

In deep water d � λ, the wave cannot “see” the bottom of the ocean; it is too far

away. We only expect the smaller length λ to control the speed. To find the velocity

v with dimensions [v] = L/T , we can combine g, ρ and λ in precisely one way:

v =
√
gλ.

It turns out that ρ is not involved! There is no other term to cancel the dimension

of mass. Similarly, in shallow water d � λ, the depth is more important than the

wavelength, so that we instead get

v =
√
gd.

2. The velocity is related to the wavelength and frequency by v = fλ. Hence, the wave-

length of a wave in shallow water of depth d is fixed by question (2):

λ =
v

f
=

√
gd

f
.

Let’s plug in the numbers for the earthquake, noting that f = 1/T :

λ =
√

9.8 · 4000 · (20 · 60) m ≈ 237 km.

This is much larger than than the depth of the ocean, so we can consistently use the

shallow water limit.

3. For simplicity, we treat one cycle of the wave as a box, whose volume is the product

of length, width and height:

V ≈ hwλ.

If E is the dimension of energy, then ε has dimensions [ε] = E/L3. Since the energy is

due to the gravitational potential of the portion of water above the mean water level,

it will involve the height h, the density ρ, and the gravitational acceleration g. The
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gravitational potential energy is mgh, so the energy density should be

ε ∼ ρgh.

We can get the same answer from dimensional analysis, since

[ε] =
E

L3
=
ML2

L3T 2
=
M

L3
· L
T 2
· L = [ρgh],

where we used the fact that E = ML2T−2 (using the formula for kinetic energy, for

example). Thus, the energy carried by one cycle of the wave is

E ≈ V ε ≈ ρgλwh2.

4. In shallow waves, question (3) shows that λ ∝
√
d. Since ρ, g, w are constant, we have

E ∝
√
dh2.

Taking the square root, and using the fact that E is constant, we obtain Green’s law:

hd1/4 ∝
√
E =⇒ h ∝ 1

d1/4
.

5. The wave is “close to shore” when the height is comparable to the depth of the water,

h ≈ d. We can use this, along with Green’s law and the initial height and depth, to

determine h:

hd1/4 = h5/4 = h0d
1/4
0 =⇒ h = h

4/5
0 d

1/5
0 = 40001/5 ≈ 5.25 m.

Assuming the shallow water equation holds,

v ≈
√
gd ≈

√
9.8 · 5.25 m · s−1 = 7.2 m · s−1.

The tsunami is around 5 meters high and travelling at a velocity of 7 m · s−1. This

doesn’t sound that high or fast, but is more than enough to cause catastrophic damage.

To see how much energy such a tsunami delivers, we use our expression from part

(3). To find the total power, we divide the energy delivered per wave E by the period

of the wave, T = 20 min. To find the power P per unit width, we divide by w. The
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result is

P =
E

Tw
≈ ρgλh2

T
= ρgvh2,

using v = λ/T . To evaluate this, we plug in the value for v we calculate, and the

density of water ρ ≈ 103 kg ·m−3. This gives

P ≈ 103 · 9.8 · 7.2 · 5.252 W ·m−1 ≈ 2 MW ·m−1.

The tsunami delivers around 2 megawatts per meter of shoreline. This is enough power

for roughly 400 households! Since the tsunami is supplying this amount for each metre

of shoreline, it’s not too hard to see why a tsunami of modest height can still wreak

terrible havoc.

Problem 3 — Life of a Sun

1. Using conservation of energy Ei = Ef . Ei = 4(1.7× 10−27)c2 and Ef = 6.7× 10−27c2 +

Ereleased. Solving for energy released, we arrive at Ereleased = 9× 10−12 J.

2. For each reaction, there is 9× 10−12 J released. A Sun is known to to have an output

power of 3.8× 1026 W (or J/s). To find the number of reactions:

3.8× 1026 J/s

9× 10−12 J/reaction
= 4.2× 1037 reactions/s

3. Each reaction uses (4 ·1.7)×10−27 kg of hydrogen. Total mass of hydrogen per second:

(4 · 1.7)× 10−27 kg

reaction
× 4.2× 1037 reaction

s
= 2.87× 1011 kg/s

4. 10% of 2× 1030 kg is 2× 1029 kg. To find the life of the Sun:

2× 1029 kg

2.87× 1011 kg
s

= 6.97× 1017 s = 20 billion years

Note: The life of the Sun is actually 10 billion years, so why is our calculation off?

This is because not enough significant digits were used for part (1); the problem was
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simplified to focus on dimensional analysis rather than calculation. For those inter-

ested: Try to do the calculations again with MH+ : 1.6725×10−27 kg, MHe: 6.644×10−27

kg. and you should find the life of the Sun is indeed 10 billion years. We will continue

to use 20 billion years as our answer for further calculations.

5. The Sun is 4.603 billion years old. If we use 20 billion years, it has 15.397 billion years

left = 4.85559792 × 1017 s. The Sun burns 2.87 × 1011 kg/s. This means that it still

has
2.87× 1011 kg

s
× 4.85559792× 1017 s = 1.39× 1029 kg left to burn

6. The Sun has 15.397 billion years left. This means we still have

15.397× 109 years

25.5 years
= 603,803,922 generations left

In reality we only have about 211,647,058 generations left because the life of the Sun

is actually 10 billion years. However, this is still a very large number!

Problem 4 — Springy Masses

1. Simply writing energy conservation,

k l0
2

2
= mghmax =⇒ hmax =

k l0
2

2mg

2. For the spring to lose contact we require hmax > l0; therefore,

k l0
2

2mg
> l0 =⇒ kmin =

2mg

l0

3. For the bottom mass to lose contact we require the spring force to be Fs = mg = k∆x.

Therefore, the spring extension is ∆x = mg/k. Writing energy conservation again,

k l0
2

2
= mg

(
l0 +

mg

k

)
+
k
(
mg
k

)2
2

k2 − 2mg

l0
· k − 3m2g2

l0
2 = 0 =⇒ k =

3mg

l0
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4. The motion of the system past loss of contact can be described as the sum of two inde-

pendent motions: the free fall motion of the center of mass, and the simple harmonic

oscillatory motion of the masses with respect to the center of mass.

Let us first parametrize the center of mass motion. At the point of loss of contact, the

velocity of upper mass is given by energy conservation,

k l0
2

2
= mg

(
l0 +

mg

k

)
+
k
(
mg
k

)2
2

+
mv0

2

2

v0 =

√
k

m

(
l0

2 −
(mg
k

)2)
− 2g

(
l0 +

mg

k

)
=

√
k

m

(
l0 +

mg

k

)(
l0 −

3mg

k

)
And hence the motion of center of mass is described by,

vcmi
=
mv0
2m

=
v0
2

ycm =
l0 + mg

k

2
+
v0t

2
− gt2

2

And now we will parametrize the oscillatory motion of the top mass with respect to

the center of mass. Since the effective spring constant is keff = 2k (only the top

half of the spring is acting on the top mass), the angular frequency of oscillations

is ω =
√

2k/m. The general solution for simple harmonic oscillation and its time

derivative are given by,

h1 − ycm = ym = c1 sin (ωt) + c2 cos (ωt) +
l0
2

ẏm = c1ω cos (ωt)− c2ω sin (ωt)

And c1, c2 are determined by initial conditions,

ym(0) =
l0 + mg

k

2
=
l0
2

+ c2

ẏm(0) =
v0
2

= c1ω

Therefore, for the height of top mass as a function of time we have,

h1(t) = ycm + ym = l0 +
mg

2k
+
v0t

2
− gt2

2
+
v0
2ω
· sin (ωt) +

mg

2k
· cos (ωt)
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v0 =

√
k

m

(
l0 +

mg

k

)(
l0 −

3mg

k

)
Maximizing this function is not trivial, and in fact cannot be done analytically! Here,

we will find the maximum attained height for a specific case by plotting height versus

time (you can play with the Desmos graph here: bit.ly/2EvbPKb).

For this graph, we have chosen m = 50 g , k = 100 N/m , g = 9.8 m/s2 , and l0 =

10 cm.

Figure 1: Graph of height of top mass as a function of time. The height function
is an overlay of a parabolic and a sinusoidal function.

As you can see, in this case, a maximum height of hmax = 0.40 m is reached at

t = 0.22 s.
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