
Problem Set No. 6

UBC Metro Vancouver Physics Circle 2018-2019

March 14, 2019

1 Quantum xerox machines

Just like a coin, a classical bit can be in precisely one of two states. Instead of heads and tails, we
label these states with binary numbers 0 and 1.1 A quantum bit is a sort of quantum coin, which
like Schrödinger’s dead-and-alive cat, can be in a mixture or superposition of the states 0 and 1:

| i = ↵|0i+ �|1i.

Here ↵,� are numbers we won’t say much more about. The state of the coin | i is a vector in two
dimensions, but instead of unit vectors î and ĵ in the x and y direction, we have unit vectors |0i
and |1i.

i >

j >

α
β

v=αi+βj> > |1>

α
β

v=α +β

|0>
|0> |1>

Figure 1: Left. A vector in the plane with two components. Right. State of a quantum coin.

There is a similar story for multiple quantum coins. Instead of a superposition over the two
outcomes 0 and 1 of flipping a single coin, the state of n quantum coins is a superposition of the
2n possible outcomes of flipping n classical coins. For instance, for n = 2 coins, the state is a
superposition of 22 = 4 possible outcomes:

| i = ↵00|0i|0i+ ↵01|0i|1i+ ↵10|1i|0i+ ↵11|1i|1i.

Note that we can write unit vectors like |0i|1i by simply “multiplying” the single coin unit vectors
|0i and |1i.2 Since there are two single-coin unit vectors, for n coins we have 2⇥ 2 · · ·⇥ 2 = 2n unit
vectors built this way, corresponding to the 2n classical outcomes.

A physical operator A is something which changes the state, such as measuring the coin or
flipping its orientation. But one of the basic requirements of quantum mechanics is that operators

are linear :
A(c1| 1i+ c2| 2i) = c1A| 1i+ c2A| 2i.

We picture linearity in Fig. 3. This is a basic property of quantum mechanics: the result of physical
1In fact, “bit” stands for “binary digit”.
2This is not the usual product of numbers, but a fancier operation called the tensor product.

1

10

10

10

0,1 00,01,10,11

n
10

10

10

10

10

10

10

2n outcomes

Figure 2: Possible outcomes for flipping one, two or n classical coins.

A =A +((((A((
Figure 3: A visual representation of a linear operator acting on a sum of vectors.

operations on any state can be reduced to the result of operations on some nice set of unit vectors.
For instance, if I want to implement a quantum operator which pokes Schrödinger’s cat in any state,
I just need to know how to poke the dead and the living cat separately!

We’ll use the requirement of linearity to show that you cannot clone a quantum coin. There is
no operator U acting as follows:

U |1i| i = | i| i,
i.e. copying an arbitrary state | i of a single quantum coin (in the second position) onto a coin
freshly prepared in some known state, e.g. |1i (in the first position). This is very different from
classical bits, where you can flip a coin and I can write down the result, effectively cloning the
information. We will assume that U exists, and prove it must be non-linear. Taking linearity as a
basic tenet of quantum mechanics, it follows that U cannot exist. Put a different way, there are no
xerox machines for copying a quantum state!

1. Pick a particular state
| i = |+i.

Since we’re assuming U can clone any state, this is fine! Using the definition of U , evaluate

U |1i|+i.

2. Suppose that |+i is the specific state

|+i = 1p
2
(|0i+ |1i).

Use the linearity of U , and then the xerox property. What do you get now?

3. Argue that the answers from parts 1 and 2 are inconsistent. Hence, the quantum xerox
machine U cannot exist!

4. Generalise your result to show that a state of n coins cannot be cloned.

5. A teleportation operator T does not clone a quantum coin, but shifts it somewhere else:

T |1i| i = | i|1i.

For instance, Alice could hold the first coin, and Bob the second; they have a teleportation
device which moves the state of Bob’s coin onto Alice’s. Is this operator linear?

2

2 Hamming it up

An error-correcting code is a way to store information that protects against physical corruption
of the storage medium. For example, suppose I have some classical information like a single bit b
which can be 0 or 1, and some probability that the thing I am storing this bit on might get lost or
erased. What should I do? Well, the simplest thing I could do is copy the bit a few times:

0 ! 00

1 ! 11.

Then, if I lose any one bit, I can just look at the other one. The information we’d like to store is
called the logical state, while the encoded, larger number of bits is called the physical state.

1. Design an error-correcting code that stores two bits worth of logical information in three
physical bits. That is, fill in the blanks in

00 ! _ _ _ (1)
01 ! _ _ _ (2)
10 ! _ _ _ (3)
11 ! _ _ _ (4)

so that your logical bits are protected against the erasure of one physical bit.

Now we study a somewhat more interesting error-correcting code called the Hamming code. It will
let us store 4 logical bits into 7 physical bits.

Let’s first revisit part 1. Although we can solve it using trial and error, there is a slicker approach.
To see this, draw a Venn diagram with two circles. Call the two logical bits x1 and x2 and put them
into the center of the two circles.

x1 x2p1

Then calculate the third bit that sits in the overlap of the two circles, according to x1 � x2 = p1,
where � means you should follow the rule

0� 0 = 0

0� 1 = 1

1� 0 = 1

1� 1 = 0

Notice that 1� 1 = 0, not 1! This is called addition “mod” 2, because everytime your sum gets up
to 2 you go back to zero.3.

3If you know how to read a clock, you already know how to add mod 12! For instance, 3 hours after 11 is 2.

3

2. Use x1, x2, p1 as your three physical bits and fill in the table above (this might be different
than how you filled it in before).

3. Using your Venn diagram, how can you fill in the x1 bit if you know p1 and x2? How about
x2 from p1 and x1?

Since it’s possible to recover x1 and x2 when one bit is erased from the Venn diagram, this method
gives an error-correcting code storing two logical bits into three physical ones, and corrects for the
erasure of one bit. Notice that we could also use our Venn diagram backwards: we could call p1 the
logical bit. Then we notice that erasing any one of x1, x2, p1 still allows us to construct p1 again.
So we can also view this as an error correcting code storing one logical bit into three physical ones!
Let’s generalise this construction to get the Hamming code.

4. First, we add another circle to our Venn diagram and relabel the regions as follows:

x1

p2
x2

x3
p3

p1

p4

You can use the � rule to store the 3 logical bits x1, x2, x3 into 7 physical bits (xs and ps).
How can we determine p4 from the xs? Convince yourself that, using the Venn diagram, you
can erase any bit and still recover x1, x2, x3.

5. Now use your Venn diagram with three circles backwards: convince yourself that we can
construct any p even after any one bit has been erased. This means you can actually store 4
logical bits into 7 physical ones!

4

3 Summoning: possibilities and impossibilities

This problem is part of Alex May’s talk “Early days with quantum tasks”. See the lecture notes for

further background and context.

Consider the summoning task shown in Fig. 4. Alice receives some quantum information at the
yellow dot. At the black call points c1, c2 she receives classical bits b1, b2. If bi = 1, for either i = 1
or i = 2, she must return her quantum information to the corresponding blue return point ri.

c1

r1

c1

r1

Figure 4: An impossible summoning task.

Notice that the return point r1 is outside of the light cone of the call point c2, and the return point
r2 is outside of the future light cone of the call point c1. In this problem, we will argue that it is
impossible to complete this task with a perfect success rate. Our strategy will be to assume it is
possible, and show our assumption results in nonsense. We can then conclude that our assumption
was wrong and the task is impossible.

1. What classical information does Alice have available to her at r1? What about at r2?

2. Usually, Alice gets a call at c1 OR at c2. Imagine though that we played a trick on her, and
asked for the state back at both c1 AND c2. If Alice is running her perfect protocol that
always completes the task, what happens when we play our trick?

3. Use the results of a previous exercise or something you’ve learned in these notes to conclude
this is nonsense, and so it must be that the task is impossible.

We’re now going to change gears, and consider a cyclic task with three diamonds, depicted in
Fig. 5. The idea will be to carry it out with a ((2, 3)) error-correcting code. Suppose Alice receives
the state at s and promptly turns it into three shares in a ((2, 3)) error-correcting code. Now she
needs to decide where to send each share. Should she send one share to each diamond, or two shares
to one diamond?

4. Notice that each diamond is the same as every other: it connects to one diamond and is
connected to from one other diamond. Use this fact to argue that Alice should split into three
parties, and send one share to each diamond.

5. Now Alice has brought one share to each diamond. At the ci each party receives the infor-
mation bi, and uses this information to decide where to send their share.There are two cases:
b = 0 and b = 1. Decide where to send the share in the error-correcting code in each case,
and argue this always completes the summoning task.

5

r1

r2r3

c1 c2

c3

s

Figure 5: A cyclic task, initially (and incorrectly) thought to be impossible.

6. Bonus. What happens in the protocol if two of the bs are 1? If you know for sure you will get
exactly two bs with b = 1, is there a protocol that will always result in the state being handed
over at one of the diamonds where b = 1? What if you’re not sure how many call points will
give b = 1?

6

	Quantum xerox machines
	Hamming it up
	Summoning: possibilities and impossibilities
	Gravitational postal service
	Intense fireworks

