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Problem 1 — Intense Fireworks

Intensity is the amount of energy a source conveys per unit time across a surface of unit

area.

I =
P

A
=

P

4πr2

Thus, intensity follows an inverse-square law (assuming a source generating constant power),

I ∝ 1

r2

where intensity decreases significantly as the energy is dispersed in space. When we refer to

the diagram below,

1



each firework explosion results in a right angle triangle, where the path of light to the light

sensor is the hypotenuse of the triangle. For example, the intensity of the first shot (N = 1)

can be described as

I1 ∝
1

(r1)2
=

1

x2 + y2

In order to show that (IN+1/IN) = 1/n2 as N increases indefinitely, we must come up with a

general expression of this ratio in terms of N only. An important note to take into account

is that when we are taking the ratios, all constants are cancelled out since the only variable

changing is r. Let’s begin with calculating some r values for different shots.

(r1)
2 = x2 + y2

(r2)
2 =

(x
n

)2
+ (ny)2

=
x2

n2
+ n2y2

=
x2 + n4y2

n2

(r3)
2 =

( x
n2

)2
+ (n2y)2

=
x2

n4
+ n4y2

=
x2 + n8y2

n4

(r4)
2 =

( x
n3

)2
+ (n3y)2

=
x2

n6
+ n6y2

=
x2 + n12y2

n6
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Therefore, based on the pattern that we see above,

(rN)2 =
( x

nN−1

)2
+ (nN−1y)2

=
x2

n2N−2 + n2N−2y2

=
x2 + n4N−4y2

n2N−2

Now that we have the rN expression for any number of shot N , we can determine our

consecutive intensity ratio:

IN+1

IN
=

(rN)2

(rN+1)2

=

(
x2 + n4N−4y2

)
/
(
n2N−2)

(x2 + n4(N+1)−4y2) / (n2(N+1)−2)

=
x2 + n4N−4y2

n2N−2 · n2N

x2 + n4Ny2

= n2N−2N+2 · x
2 + n4N−4y2

x2 + n4Ny2

= n2 · x
2 + n4N−4y2

x2 + n4Ny2

If we apply the limit as N increases indefinitely, we obtain:

lim
N→∞

IN+1

IN
= n2 lim

N→∞

(
x2 + n4N−4y2

x2 + n4Ny2

)

= n2 lim
N→∞

(
n4N−4y2

n4Ny2

)
= n2 lim

N→∞

(
n4N−4−4N)

= n2 · n−4

lim
N→∞

IN+1

IN
=

1

n2
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Problem 2 — A Sticky Situation

1. In order to find the expression for
x

D
, our goal is to find x (as D can be easily found

later). This quantity is the horizontal range of the combined masses from the half-way

point. Since this is within the horizontal direction, we can define it to be

x ≡ (horizontal velocity of combined masses)× (time it takes to hit the ground)

x = uxτ

Let’s begin with the first unknown, ux, defined as the horizontal velocity of the com-

bined masses. To find this, we must use conservation of momentum. First, let’s find

an expression for h then use that to find the velocity of impact of M as it drops a

height of h. In the vertical direction:

v2 = v20 + 2ad

(vm,f )
2 = (vm,i)

2 − 2gh

0 = (v sin θ)2 − 2gh

h =
(v sin θ)2

2g
(Eqn. 1)

v2 = v20 + 2ad

(vM,f )
2 = (vM,i)

2 + 2gh

(vM,f )
2 = 2g

(
(v sin θ)2

2g

)
(Using Eqn. 1)

vM,f = v sin θ

This essentially means that the final vertical velocity of M is the initial vertical velocity

of m, which makes sense as they both traverse the same displacement.
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It is now time to use conservation of momentum within the x−direction:

pi = pf

pm,i +��
�*0

pM,i = pf

mv cos θ = (m+M)ux

mv cos θ

m+M
= ux

If α =
m

M
, then our horizontal velocity will be:

ux =
α

α + 1
v cos θ (Eqn. 2)

Now, let’s use conservation of momentum in the y−direction to find the vertical velocity

of the combined masses.

pi = pf

�
��*

0
pm,i + pM,i = pf

Mv sin θ = (m+M)uy

Mv sin θ

m+M
= uy

Again, if α =
m

M
, then our vertical velocity will be:

uy =
v sin θ

α + 1
(Eqn. 3)

Let’s use this information to calculate τ , the time it takes the combined masses to hit

the ground.

d = v0t+
1

2
at2

h = uyτ +
1

2
gτ 2

0 =
1

2
gτ 2 +

v sin θ

α + 1
τ − (v sin θ)2

2g
(Using Eqns. 1 and 3)
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To solve for τ , we must use the quadratic equation.

τ =

−v sin θ

α + 1
±

√
(v sin θ)2

(α + 1)2
− 4

(
1

2
g

)(
−(v sin θ)2

2g

)
2
(
1
2
g
)

=

−v sin θ

α + 1
+

√
(v sin θ)2

(α + 1)2
+ (v sin θ)2

g
(Choosing only the + root.)

=
v sin θ

g

(
− 1

α + 1
+

√
1

(α + 1)2
+ 1

)
(Factoring v sin θ out.)

=
v sin θ

g

(
− 1

α + 1
+

√
1 + (α + 1)2

(α + 1)2

)

By combining everything together, we achieve:

τ =
v sin θ

g

(√
(α + 1)2 + 1− 1

α + 1

)
(Eqn. 4)

Now that we’ve calculated for both ux (Eqn. 2) and τ (Eqn. 4), we can simply multiply

the two together to determine the horizontal displacement of the combined masses:

x =
v2 sin θ cos θ

g
·
α
(√

(α + 1)2 + 1− 1
)

(α + 1)2
(Eqn. 5)

In the original diagram, D is half of the range, R. To calculate R:

d = v0t+
1

2
at2 R = (v cos θ)t

0 = (v sin θ)t− 1

2
gt2 R =

2v2 sin θ cos θ

g

t =
2v sin θ

g
∴ D =

v2 sin θ cos θ

g
(Eqn. 6)
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Finally, we obtain what we are looking for when we divide Eqn. 5 by Eqn. 6:

x

D
=
α
(√

(α + 1)2 + 1− 1
)

(α + 1)2

2. If f(α) =
α
(√

(α + 1)2 + 1− 1
)

(α + 1)2
, then:

lim
α→∞

f(α) = lim
α→∞

α
(√

(α + 1)2 + 1− 1
)

(α + 1)2

= lim
α→∞

α
(√

α2 + 2α + 2− 1
)

α2 + 2α + 1

= lim
α→∞

α

(
α

√
1 +

2

α
+

2

α2
− 1

)

α2

(
1 +

2

α
+

1

α2

)

= lim
α→∞

α2

(√
1 +

2

α
+

2

α2
− 1

α

)

α2

(
1 +

2

α
+

1

α2

)

= lim
α→∞

√
1 +

2

α
+

2

α2
− 1

α

1 +
2

α
+

1

α2

= lim
α→∞

√
1 +

�
�
���
0

2

α
+
�
�
���
0

2

α2
−
�
�
���
0

1

α

1 +
�
�
���
0

2

α
+
�
�
���
0

1

α2

=

√
1

1
= 1

∴ lim
α→∞

f(α) = 1
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3.

α
(√

(α + 1)2 + 1− 1
)

(α + 1)2
=

1

2√
(α + 1)2 + 1 =

(α + 1)2

2α
+ 1

(α + 1)2 + 1 =

(
(α + 1)2

2α
+ 1

)2

α2 + 2α + 2 =

(
(α + 1)2 + 2α

)2
4α2

4α4 + 8α3 + 8α2 = (α2 + 4α + 1)2

4α4 + 8α3 + 8α2 = α4 + 8α3 + 18α2 + 8α + 1

3α4 − 10α2 − 8α− 1 = 0

By the zero factor principle, α = −1 is a potential solution:

3(−1)4 − 10(−1)2 − 8(−1)− 1 = 3− 10 + 8− 1 = 0

Knowing this, we can use long division to factor the polynomial.

By the same principle, α = −1 is yet again another potential solution, thus α + 1 is
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another factor:

3(−1)3 − 3(−1)2 − 7(−1)− 1 = −3− 3 + 7− 1 = 0

If we use long division again,

(3α3 − 3α2 − 7α− 1)÷ (α + 1) = 3α2 − 6α− 1

Therefore, when we factor the polynomial we get:

3α4 − 10α2 − 8α− 1 = (α + 1)2(3α2 − 6α− 1)

If we use the the quadratic equation to solve the last factor, we get:

α =
6±

√
(−6)2 − 4(3)(−1)

2(3)

=
6±
√

36 + 12

6

=
6±
√

48

6

=
6± 4

√
3

6

=
3± 2

√
3

3

Therefore, our potential solutions are

α = −1,
3± 2

√
3

3

However, α = −1 or α =
3− 2

√
3

3
are neither mathematically true nor physically

possible. Therefore, to get exactly half the half-range, or f(α) = 1
2
,

α =
3 + 2

√
3

3
≈ 2.2 times more massive than M
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