Problem Set No. 9

UBC Metro Vancouver Physics Circle 2018-2019 May 2, 2019

1 Evel Knievel and the Crocodile Pit

Evel Knievel rides his stunt motorcycle over a semicircular ramp of radius R. He is planning to use this ramp to shoot his motorbike over a pit of ravenous Alabama crocodiles, of length L, immediately after the ramp. His motorcycle can achieve a maximum speed of v, and for simplicity, we assume Knievel can accelerate to this speed instantaneously and at will.

Figure 1: Evil Knievel jumping over a pit of crocodiles.

- 1. Label the angle from the horizontal by θ . What condition must v satisfy to launch Knievel at an angle θ ?
- 2. Show that if Knievel launches at angle θ , his airtime is

$$t = \frac{1}{g} \left[vc_{\theta} + \sqrt{v^2 c_{\theta}^2 + 2gRs_{\theta}} \right],$$

where $s_{\theta} = \sin \theta$ and $c_{\theta} = \cos \theta$.

3. Deduce that after launching at θ , his range over the crocodile pit is

$$r = \frac{v^2 s_{\theta}}{g} \left[c_{\theta} + \sqrt{c_{\theta}^2 + \frac{2gRs_{\theta}}{v^2}} \right] - R(1 + c_{\theta}).$$

- 4. The range is a very unpleasant function to optimise. Instead, let's study a special case. Suppose that Knievel launches horizontally at the top of the ramp with $\theta = \pi/2$. What does v need to be to clear the crocodile pit?
- 5. For $\theta = \pi/2$, use part (1) to demonstrate that he will automatically clear the pit provided

$$(\sqrt{2} - 1)R > L.$$

2 Simply Let Go

A ball is released from point (x_0, y_0) on top of an incline with angle θ to score a bucket placed at the bottom of the incline (ignore the height and width of the bucket relative to x_0 and y_0).

Figure 2: The release of the ball and subsequent scoring of the bucket.

- 1. If the ball were to hit the incline only once, as shown above, what set of initial coordinates would allow it to enter the bucket?
- 2. Generalize the results from part (1) to N collisions with the incline (this is tricky!).
- 3. What conditions should x_0 and y_0 satisfy when N = 0 and $N \to \infty$? First, answer using your intuition and then confirm with the result from part (2).