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This week, we will be delving into the mysteries of matter. Our first problem shows how
the competition between energy and disorder controls the structure of crystals. We then
move on to magnets, and deduce (for a simple model) that there are magnetic materials
in 2D, but no magnets in 1D. We end with a scheme for simulating the 2D Ising model
with a biased coin, and relate the bias to the temperature.

1. The cost of free energy

How do energy and entropy dictate the structure of a crystal?
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Place a glass of ice cold water in a hot room at temperature 7. Over time, the glass will
heat up until it stabilises to the ambient temperature; this is called thermal equilibrium. In
equilibrium, we can predict the energy of the glass, using the basic principle that nature is
lazy. But perhaps it is more apt to say that nature is cheap: it wants to choose a state which
"costs" as little as possible, and energy is expensive. But just like Costco, there is a discount
if you buy in bulk!
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Figure 1: Left. A cool glass in a hot room soon reaches thermal equilibrium. Middle. The
free energy is the energy cost with an entropy discount. Right. A crystal of N iron atoms.
Removing atoms causes a strain on nearby sites, with an associated energy cost € per vacancy.
Let’s make this precise. Systems in equilibrium like to minimize the free energy:
F=FE-TS.

Here, E is the energy of the state, while T is the system temperature (usually measured in
Kelvin). The last term, S, is the entropy. You may not have seen this before, but we will



now define it! If there are W states with the same energy as the one we are considering, the
associated entropy is
S =kplogW,

where kg = 1.4 x 1072 J/K is Boltzmann’s constant. When comparing states A and B of a
system at temperature T, state A will be favoured over state B when the free energy cost of
A is smaller than B{T]

0>AF=AF—-TAS,

where AFE = E4 — Egand AS = 54 — Si.

Consider a crysta]E] made of N iron atoms. Crystals can form with gaps in the lattice where
an atom is missing. The more gaps or “defects” that are present, the weaker the crystal, so
if the crystal is grown in the lab, we might hope for a way to reduce the number of defects.
Removing an atom from the crystal lattice places a strain on the remaining atoms, with an
energy cost of ¢ per vacancy, so the total energy is £ = Ny for N; atoms removed. Let’s use
the free energy principle to find how many defects a lab-grown iron crystal is likely to have.

1. (a) How many defects are present in the lowest energy state? What is the entropy?

(b) What is the energy for a single defect? Compute the number of single-defect config-
urations and the associated entropy.

(c) There are N = 8.5 x 1022 iron atoms in a cubic centimetre of iron. How low must the

temperature be for the zero defect state to be favoured over the one defect state?
Take ¢ = 1.4 x 107 J.

2. For this problem, you will need the binomial coefficients

n n!
nCk = (k) T (n— k)

(a) What is the free energy for a system with N; defects out of NV possible sites? No
need to simplify your answer.

(b) What is the change in free energy when going from N; to Ny + 1 defects? You may
assume that there are many defects, N; > 1. Express you answer in terms of the
concentration of defects, n = N;/N.

(c) Recall that the configuration which minimises free energy ' = F—T'S (at some fixed
temperature T) is the one that is actually realised. We can keep adding defects while
AF < 0, but when we reach the minimum, we find that AF = 0. Use this to show
that the thermodynamically favoured number of defects neq at temperature 7' is

1

neCI(T7 5) 1+ 65/(kBT) :

(d) Use the previous question to estimate the number of vacancies in 1 cubic centimetre
of iron at room temperature, using the parameters from Question 1(c).

—Daniel Korchinski

'We will see why in today’s last problem.
2A crystal is any structure which repeats periodically in space, including a metallic lattice.



2. Ising into phase transitions

Why are there magnetic materials in 2D, but not in 1D?

The simplest model of magnetic material is the Ising model (pronounced "easing"), a lattice
of tiny bar magnets that can point up or down. These little magnets, or spins, feel their
immediate neighbours and want to align with them. For a one dimensional chain, we label
spins 1 through N, and they take values s; = +1, with +1 called "up" and —1 "down".
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Figure 2: Left. Aligned Ising spins have an energy —J, while anti-aligned spins have energy
+J. Right. Two spins domains, separated by a boundary of length L. = 10, in a 7 x 7 grid.

Whenever two neighbouring spins are the same, they have energy —J and whenever they are
different, they have energy +.J. The energy is therefore
E = —J(s152+ 283 + 8354+ - + SN_15N) -
The sum of spins
M=s1+s2+ - +sn

is called the magnetization.

1. (a) What is the energy of the configuration: {—1,-1,—-1,1,1,—-1,—1,—1,+1,—1}?

(b) For N spins, find the configurations with smallest and largest energy. What is the
magnetization M in each case?

Our next goal is to check whether a hot, one-dimensional chain can be magnetically ordered.
A material is magnetically ordered if most of its spins point in the same direction.
2. (a) What is the energy when all N spins are aligned up, i.e. 1 --- 1. What is the entropy?

(b) Imagine we flip /V; spins to —1, all in a row. The spins now look like

N times
—
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What is the energy of the system now? Count the possible configurations and find
the associated entropy.



(c)

Using the previous two questions, calculate the change in energy from aligned to
N, disaligned spins. Show that when N; = N/2, the free energy change is

AF = 4J — kT log(N/2).

Conclude that if the chain is long (/N > 1) the blob of disaligned spins are favoured
at any temperature. We cannot have one-dimensional magnets!

Our final goal will be to show that, for a two-dimensional Ising model, a net magnetization
is possible, but only if the magnet is cold enough. The critical temperature below which
magnetization is possible is called the Curie temperature. We will compare two states: one
with all spins aligned, and one with the system partitioned by a wall into a region of up spins
and a region of down spins. The technical term for these regions is spin domains.

The state with a single domain of aligned spins is called the magnetically ordered phase.
It is a phase of matter like solid, liquid, and gas. Thus, at the Curie temperature there is a
phase transition from magnetic order to magnetic disorder where spins are allowed to point
in different directions.

3.

(a)

(b)

(c)

(d)

Argue that AF ~ 2JL, where L is the length of the wall. (You may assume the
boundary is mainly straight lines.) Assuming the boundary crosses from one side of
an N x N grid to the other, give a lower bound on L in terms of V.

For an N x N grid, estimate the number of boundary configurations Ny, of length L.

Hint. A very loose estimate is
N ~ CAF

for some numbers C' and A. What are reasonable guesses for C and A?

Calculate the difference in free energy, AF, between a single spin domain (all
aligned) and two domains separated by a vertical wall of length L. You should find

AF =~ (2J — kgTlog A)L — kT log C.

Plug in your values for C, A and the lower bound on L from the previous ques-
tions. What happens when N is large? Use these results to estimate the critical
temperature T, at which AF' = 0. Hint. N > log N for large N.

—Daniel Korchinski



3. Mean field theory

Can we simulate 2D magnets with a biased coin?

Imagine that we have cooled down our two-dimensional Ising system enough that it is solidly
magnetized in one direction or another. Most spins are pointing up, let’s say. However, for
T > 0, there will still be thermal fluctuations. A few spins will be pointing down, even if all of
those around them are pointing up.

To see why this happens, think back to the problem about crystal defects. A single spin
pointing down out of thousands pointing up is like a single crystal defect in a large crystal: it
adds a lot of entropy at the cost of increasing the energy by only a little. This is what we mean
by thermal fluctuations: unless T' = 0, some fraction of the spins will be pointing against the
magnetization. If T" is small, this is a small fraction, if it is large, the fraction is larger, and if
T > T,, the magnetization goes away entirely: 50% of spins are pointing in each direction.
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Figure 3: Left. The average value of spin, m, is determined by the probability the spin will
point up or down. In the mean field approximation, the whole lattice is made of these averaged
spins. Right. The Boltzmann probability distribution suppresses high energy states.

At finite temperature, the interaction of nearby spins makes the Ising model extremely
difficult to analyse. We can simplify the calculation by ignoring this dependence, and instead
modelling each spin as having some probability p of pointing up. This is called the mean field
theory approximation. At a fixed temperature T, the probability of a configuration x is given
by the Boltzmann factor:

P(z) = %efEm/kBT,

where kg is Boltzmann’s constant, and Z is a normalization factor to ensure the probabilities
add up to 1. This captures the intuition that low energy configurations are more likely. But by
carefully distinguishing between the state, x, and its energy E(x), we can finally see why free
energy is minimised.

1. (a) If W(FE) is the number of states with energy F, show that the Boltzmannian proba-
bility distribution for energy is

1
P(E) = EW(E)e_E/kBT.



(b)

Recall that the entropy for states at energy E is S(E) = kplog W (E). Use this to
rewrite the probability distribution for energy as
P(E) = ~eFB/hsT,
VA
where F' = E —T'S is the free energy as before. Conclude that states minimising the
free energy are the most probable.

Let’s return to the 2D Ising model.

2. (a)
(b)

3. (a)

(b)

(c)

(d)

If each spin has probability p of pointing up, what is the average value m of the spin?
Consider two spin states, s; and ss, with respective probabilities

o—E1/kT o—E2/kT

P(s1) = P(s2) =

e—B1/KT . o= Ea/kT” e—BV/KT { o= B3 /kT

Show that these formulas really only depend on the energy difference, AE = E1—FEs.

Imagine a spin s whose four neighbors all have an average spin of m. It has two
possible states: up and down. What is the average energy difference AF,, between
these states? Hint. Recall that a neighbouring spin s’ contributes energy —2.Jss’.

In the mean field approximation, we treat average energy differences as exact,
AFE., = AE. Plug the result of the previous problem into the Boltzmann distribution
from Problem 1(b), and calculate the probability s = +1(7).

In Problem 1(a), you related the probability p that a spin points up to its aver-
age value m. But in the previous problem, you found an expression for p = P(1)
which involves m! By equating these expressions for m, derive the mean field self-
consistency equation,

4Jm e8Im/ksT _
m = tanh ( >

kpT )~ STm/ksT 4 1

This tells us something remarkable. We can simulate the spins on a 2D Ising model,
consistently taking interactions into account, by flipping a coin with bias m! This is
the magic of mean field physics.

The self-consistency equation cannot in general be solved exactly. Instead, consider
the limits (i) ' — 0 and (ii) 7" — oco. Do these limits make sense, given a phase
transition at the Curie temperature 7.?

—Phillip Bement

What are the necessary conditions for a rainbow to form? Where would you look for

Brainteaser: rainbows

one? Could you make your own?




