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1. The cost of free energy

Solutions

1. (a) The minimal energy is Nd = 0 defects. With no defects, the there is only one config-
uration, meaning that S = kB log(1) = 0.

(b) The energy is E = ε. Since the defect could be at any of the N positions, there are
a total of N =

(
N
1

)
configurations. The entropy is then S = kB logN .

(c) For the 0 defect state to be favoured, we need:

0 < ∆F = ∆E − T∆S = ε− kBT logN.

Rearranging, the zero-defect state is favoured when

T <
ε

kB logN
=

1.4× 10−19

1.38× 10−23 log(8.5× 1022)
≈ 192 K.

2. (a) The number of possible arrangements is given by the number of ways to choose Nd

vacancies from N sites, or W =
(
N
Nd

)
. The entropy is therefore

S = kB log

(
N

Nd

)
.

Since each vacancy costs an energy ε, the free energy at temperature T is

F = E − TS = Ndε− kBT log

(
N

Nd

)
.

(b) From the previous question, adding a single defect will lead to a change in entropy.
Using the formula for binomial coefficients, and log laws, we find that

∆S = kB log(

(
N

Nd + 1

)
− log

(
N

Nd

)
)

)
= kB log

[
Nd!(N −Nd)!N !

(Nd + 1)!(N − (Nd + 1))!N !

]
= kB log

(
N −Nd

Nd + 1

)
.
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When Nd � 1 (many defects), then we can express this difference in terms of the
density of defects, n = Nd/N :

∆S = kB log

(
n−1 − 1

1 + 1/Nd

)
≈ kB log(n−1 − 1).

The change in energy is just ∆E = ε, since we add a single defect. The change in
free energy is then

∆F = ∆E − T∆S ≈ ε− kBT log(n−1 − 1).

The equilibrium concentration, neq, is given by setting the change in free energy to
zero and solving for n:

0 = ∆F = ε− kBT log(n−1
eq − 1) =⇒ neq =

1

1 + eε/kBT )
.

(c) Room temperature is around T = 20◦ C ≈ 300 K. Using the parameters from ques-
tion 1(c), and assuming the upper bound from the previous question gives a good
estimate of the density, the number of defects in a single cubic centimetre of iron is

Nd ≈
N

1 + eε/kBT )
=

8.5× 1022

1 + exp[ 1.4×10−19

300(1.4×10−23)
]
≈ 2.8× 108.

There are around 300 million vacancies!

2. Ising into phase transitions

Solutions

1. (a) We just take pairs of consecutive spins, multiply them together, then add up the
results and multiply by −J . The products of consecutive spins are

s1 · s2 = −1 · −1 = 1

s2 · s3 = −1 · −1 = 1

s3 · s4 = −1 · 1 = −1

s4 · s5 = 1 · 1 = 1

s5 · s6 = 1 · −1 = −1

s6 · s7 = −1 · −1 = 1

s7 · s8 = −1 · −1 = 1

s8 · s9 = −1 · 1 = −1

s9 · s10 = 1 · −1 = −1.

Adding up all the terms in the last column, and multiplying by −J , gives

−J(1 + 1− 1 + 1− 1 + 1 + 1− 1− 1) = −J.
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(b) Since aligning consecutive spins gives energy −J , and anti-aligning them gives +J ,
we minimise the total energy by aligning all spins, an maximise total energy by anti-
aligning them. For minimum energy, we have all spins aligned, ↑↑ · · · ↑ or ↓↓ · · · ↓.
The total magnetisation is M = ±N . For anti-aligned spins, we have ↑↓↑↓ · · · or
↓↑↓↑ · · · . The total magnetisation depends on N . If N is even, then the up and down
spins cancel, and M = 0. If N is odd, then they cancel except for the last spin, and
hence M = ±1.

2. (a) Since aligned spins have energy −J , and we have N − 1 pairs, the total energy is
E1 = −J(N − 1). There is a single way of aligning all spins up, so the entropy is
S1 = kB log 1 = 0.

(b) Each pair of anti-aligned spins gives +J rather than −J . Compared to the state
where all spins align, each misalignment therefore adds +J − (−J) = 2J energy.
Since we have introduced two misalignments, the energy is

E2 = E1 + 2(2J) = −J(N − 1) + 4J.

The leftmost of the N1 negative spins can start in any of N −N1 positions, so there
are N −N1 configurations, and hence the entropy is S2 = kB log(N −N1).

(c) We can calculate the change in free energy, at temperature T , from the results of
the previous question:

∆F = (E2 − E1)− T (S2 − S1) = 4J − TkB log(N −N1) = 4J − TkB log(N/2),

where we set N1 = N/2 in the last step. If the chain is long, N � 1, then log(N/2) is
very large. Provided the temperature is nonzero, T > 0, then the second term will
beat the first, and the "island" of N/2 spins has smaller free energy than all spins
up. It is therefore favoured over all spins up! Since "all spins up" is the definition of
a magnetic material, it appears we cannot have these materials in one dimension.

3. (a) In the previous question, we noted that going from an aligned to a misaligned spin
incurs an energy cost of 2J . For a straight wall of length L, the number of misalign-
ments is L, and hence the energy cost is ∆E = 2JL. This result remains approxi-
mately true for a wall which mostly consists of straight segments, ∆E ≈ 2JL. If the
wall reaches from one side of the grid to the other, it must be have length L ≥ N ,
so this is our lower bound.

(b) Let’s just consider walls going from the left to the right. These walls can start at
any of N sites on the left boundary, so C = N . Let’s imagine the boundary wall can’t
double back on itself, so every time we proceed, we can only go three directions.
That means A = 3. So the number of configurations NL ≈ N3L.

(c) Recall that a single domain of aligned spins can only occur in one way, so the entropy
vanishes. Using the previous two questions, the change in free energy going from a
single spin domain to two domains separated by a wall of length L is approximately

∆F = ∆E − TS ≈ 2JL− kBT log(CAL) = (2J − kBT logA)L− kBT logA,
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(d) If we plug in our choices A = 3 and C = N , and the lower bound L = N , we obtain

∆F ≈ (2J − kBT log 3)N − kBT logN.

As hinted at, the function N grows much faster than logN for large N , so only the
first term is relevant. We get

∆F ≈ (2J − kBT log 3)N.

If Tc is the value of temperature for which this change in free energy is zero, we find

Tc ≈
2J

kB log(3)
≈ 1.8

J

kB
.

This is reasonably close to the exact result, obtained using much more mathematics:

Tc =
2J

log(1 +
√

2)
≈ 2.3

J

kB
.

3. Mean field theory

Solutions

1. (a) Assuming that each state with energy E is independent and equally likely, if there
are W (E) of them, and each has probability e−E/kBT /Z, then the total probability is
just

P (E) = total number of states× probability of each state =
1

Z
W (E)e−E/kBT .

(b) Recall that entropy is defined as S(E) = kB logW (E). We can therefore write W (E)

as
W (E) = eS(E)/kB = eTS(E)/kBT .

This means we can rewrite our answer to the previous question as

P (E) =
1

Z
W (E)e−E/kBT =

1

Z
e(ST−E)/kBT =

1

Z
e−F (E)/kBT ,

where we used the definition of free energy, F = E−TS. The larger F is, the smaller
the probability P (E)! So the state minimising the free energy is the most likely, as
we have been claiming all along.

2. (a) The average or expected spin m is the sum of outcomes weighted by their probabil-
ities. We have probability p of pointing up (spin s = +1) and hence probability 1− p

of pointing down (spin s = −1) so the average spin is

m = p · (+1) + (1− p) · (−1) = 2p− 1.
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(b) First, observe that

e−E1/kT = e−(E2+∆E)/kT = e−E2/kT e−∆E/kT .

We can use this to rewrite the probabilities solely in terms of energy differences:

P (s1) =
e−E1/kT

e−E1/kT + e−E2/kT
=

e−E2/kT e−∆E/kT

e−E2/kT (e−∆E/kT + 1)
=

e−∆E/kT

e−∆E/kT + 1

P (s2) =
e−E2/kT

e−E1/kT + e−E2/kT
=

e−E2/kT

e−E2/kT (e−∆E/kT + 1)
=

1

e−∆E/kT + 1
.

(a) Let’s use cardinal directions N,E, S,W to index neighbors. The energy difference
is then

∆E = −J(sN + sE + sS + sW ) · (1− (−1)) = −2J(sN + sE + sS + sW ).

To get the average difference, we can replace each spin with its average, m. This
gives

∆Eav = −2J(m + m + m + m) = −8Jm.

(b) Plugging the result from 3(a) into 2(b) gives

P (s =↑) =
e8Jm/kT

e8Jm/kT + 1
.

(c) In the previous question, P (s =↑) is exactly the probability p that a spin points up.
So we have two equations related m and p:

m = 2p− 1, p =
e8Jm/kT

e8Jm/kT + 1
.

We can eliminate p:

m = 2p− 1 =
2e8Jm/kT

e8Jm/kT + 1
− 1 =

e8Jm/kT − 1

e8Jm/kT + 1
= tanh

(
4Jm

kBT

)
.

This is the mean field self-consistency equation.

(d) Recall that m is the average spin. It m = 1, it tells us that almost all spins point
up, and the material is magnetised. A similar story is true for m = −1. If, on the
other hand, m = 0, it means that spins are equally likely to point up or down, so as
in previous questions, we are in a phase with no magnetism. Now let’s consider the
limits T → 0,∞.

(i) As T → 0, the term 8Jm/kBT gets very large, and approaches ±∞ depending
on the sign of m. If m is positive, it approaches +∞, and hence e8Jm/kBT also
blows up, so

m =
e8Jm/kT − 1

e8Jm/kT + 1
≈ e8Jm/kT

e8Jm/kT
= 1.
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In other words, one possibility is all spins pointing up. But if m is negative, then
as T → 0, 8Jm/kBT approaches −∞, and hence e8Jm/kBT → 0. It follows that

m =
e8Jm/kT − 1

e8Jm/kT + 1
≈ 0− 1

0 + 1
= −1.

Thus, it is also possible that all spins point down! In either case, we are redis-
covering that at low temperatures, the material can be magnetised, with all (or
almost all) spins pointing in the same direction.

(ii) Now, in the limit T →∞, e8Jm/kBT → 1, and hence

m =
e8Jm/kT − 1

e8Jm/kT + 1
→ 0.

At high temperatures, there is no magnetism, just as we discovered for the 2D
Ising model in the previous question!
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