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Exoplanet Transit

1. (a) The fractional flux decrease is equal to the fractional area decrease; this is the ratio
of planet to star cross-sectional area:

∆F

F
=
πR2

planet

πR2
star

.

Reading the value at the bottom of the dip to be Fmin ≈ 0.9872, F = 1, we get

Rstar ≈ 1.84 · 7× 108 m
√

1− 0.9872 ≈ 1.457× 108 m.

This is approximately twice the radius of Jupiter.

(b) This answer can be read directly off the plot. It is the distance between two dips,
approximately 4.1 days.

2. (a) If the potential energy U = GMm/a and kinetic energy K = mv2/2 are equated, we
find the velocity is

v2 =
2GM

a
.

(b) The period is the circumference of orbit, 2πa, divided by the velocity, so T = 2πa/v.
Substituting our previous answer, we find

T 2 =
2π2a3

GM

Note. This is slightly wrong. The expression should have a factor of 4 rather than 2

in the numerator, due to subtleties in the correct kinetic energy. This is not relevant
to an order of magnitude estimate!

(c) Inverting the equation from the previous question, we get

a =

(
GMT 2

2π2

)1/3

.

Setting T = 4.1 days= 354240 seconds, G = 6.674 × 10−11 kg−1m3s−2 and M =

1.47 · 2× 1030 kg, we find a = 1.076× 1010 m.
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3. (a) The radius is 2.2RJ .

(b) This is 0.07 AU, i.e. 0.07 times the distance between the Earth and the Sun. This is a
huge planet located extremely close to its star!

(c) Using the equation from Problem 1(a), we find ∆F = R2
⊕/R

2
star ≈ 2.5× 10−5. This is

minuscule!

Spectroscopic Binaries

1. (a) Two sets of displaced spectral lines will be present (assuming both radial velocities
are nonzero at the time of the snapshot).

(b) They will alternate being redshifted/blueshifted.

2. (a) If a stationary source emits light waves at a frequency f , and we are standing a
distance x away from the source, the wave will take a time t = x/c to reach us. If
instead the source is moving at velocity v, then from one wave emission to the next
the source will move ∆x = v/f . This next wave then reaches us in a time:

t′ =
x+ ∆x

c
=
x+ v/f

c
, (1)

which is a time difference:

∆t = t′ − t =
v

cf
. (2)

So instead of receiving a wave every period 1/f , we now receive a wave with period

1

f ′
=

1

f
+ ∆t =

1

f

(
1 +

v

c

)
. (3)

Using λ = c/f , we have

λ′ = λ
(

1 +
v

c

)
(4)

or rearranging for v

v = c

(
λ′

λ
− 1

)
. (5)

(b) The wavelength is slightly longer, so it is redshifted and thus moving away from us.
Using equation 5, we find

v = c

(
656.4

656.3
− 1

)
' 46 km/s (6)

(c) The star system as a whole is moving away from us at 40 km/s.
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(d) The orbital velocity is found when the star is moving along the line-of-sight (i.e.
maximum radial velocity subtracted from the system radial velocity). For star A this
is 60− 40 = 20 km/s. For star B we have 140− 40 = 100 km/s.

(e) With circular orbits, the stars will travel 2πr in one period T . The period of the
sinusoids gives us T = 8 days, or 691200 s. Therefore star A has an orbital radius

rA = vAT/2π = 20000 · 691200/2π ' 2.2× 106 km (7)

and for star B we have

rB = vBT/2π = 100000 · 691200/2π ' 1.1× 107 km. (8)

3. (a) In a gravitationally bound system (i.e. stable), the COM frame must have zero total
momentum. Thus the stars at any point in time will be travelling in opposite direc-
tions, with the vector connecting them intersecting the COM (hence orbiting about
the COM). Since the total momentum of the system is zero, we have

MAvA +MBvB = 0 =⇒ MA|vA| = MB|vB|. (9)

(b) The vector connecting the two stars will rotate about the centre of mass, so we can
apply Kepler’s third law to this system. The “semi-major axis" is the length of this
vector, a = rA + rB, or

a =
T

2π
(vA + vB). (10)

Thus we have

a3

T 2
=

T 3

(2π)3
(vA + vB)3

T 2
=

GM

(2π)2

T

2π
(vA + vB)3 = GM

=⇒ M = MA +MB =
T

2πG
(vA + vB)3. (11)

(c) We first isolate MB in equation 9

MB = MA
vA
vB
. (12)

Substituting this into equation 11 allows us to solve for MA
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MA

(
1 +

vA
vB

)
=

T

2πG
(vA + vB)3

MA =
T

2πG

(vA + vB)3(
1 + vA

vB

)
MA =

691200

2π · 6.67 · 10−11
1200003

1 + 1/5
= 2.37× 1030 kg ' 1.2 M�. (13)

And thus MB is

MB = 1.2 M� ·
1

5
' 0.2 M�. (14)

Bonus. Since we only observe the (projected) maximum radial velocities, vr, the actual velocity
in the orbital plane can be recovered as

v =
vr

sin i
. (15)

Substituting this into equation 11 gives us

MA +MB =
T

2πG

(vA + vB)3

sin3 i
. (16)

from which we can compute both masses as before. However, i is impossible to know
from the radial velocity curves alone, since we are measuring v sin i and know neither v
nor i! For a circular orbit, the amplitudes of the radial velocity curves will be reduced as
i decreases to 0◦.
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