UBC Virtual Physics Circle
 A Hacker's Guide to Random Walks

David Wakeham

June 11, 2020

Overview

- Today, we're going to learn about random walks.

- This is the motion executed by a drunkard! But also polymers, photons in the sun, atoms...
- We will take an elementary approach.

All the math!

Random walks: steps

- A random walk consists of random steps S.

This could be in one or more dimensions.

- The sum of N steps is

$$
T_{N}=S_{1}+\cdots+S_{N}
$$

We would like to understand some aspects of T_{N}.

Basic probability: averages

- We're going to need a few basic facts about probability.
- First of all, suppose X is a random number (or function of random numbers). The average $\langle X\rangle$ is

$$
\langle X\rangle=\frac{\text { sum of results for } X \text { over many experiments }}{\text { number of experiments }}
$$

- We won't need probability, just averages! In pictures:

$$
\langle\boldsymbol{X}\rangle=\frac{\boldsymbol{X}+\boldsymbol{X}+\boldsymbol{X}+\boldsymbol{X}}{}
$$

Basic probability: sum rule

- Sum rule. If X and Y are random, then

$$
\begin{aligned}
\langle X+Y\rangle & =\frac{\text { sum of }(X+Y)}{\text { number of experiments }} \\
& =\frac{(\text { sum of } X)+(\text { sum of } Y)}{\text { number of experiments }}=\langle X\rangle+\langle Y\rangle
\end{aligned}
$$

In pictures:

$$
\begin{aligned}
\langle\boldsymbol{X}+\boldsymbol{Y}\rangle & =\frac{\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{X}+\boldsymbol{Y}}{} \\
& =\left(\frac{\boldsymbol{X}+\boldsymbol{X}+\boldsymbol{X}}{}\right)+\left(\frac{\boldsymbol{Y}+\boldsymbol{Y}+\boldsymbol{Y}}{}\right)
\end{aligned}
$$

Random walks: unbias

- Unbiased. We say the steps are unbiased if $\langle S\rangle=0$.
- It follows from the sum rule that T_{N} is unbiased:

$$
\left\langle T_{N}\right\rangle=\left\langle S_{1}\right\rangle+\cdots+\left\langle S_{N}\right\rangle=0
$$

Random walks go nowhere on average! Boring.

- Let a drunkard move back or forward a step by tossing a fair coin S. In N tosses, we get $\sim N / 2$ tails andheads, so

$$
\langle S\rangle=\frac{N / 2-N / 2}{b c N}=0
$$

On average, the drunkard remains where they are!

Basic probability: uncorrelation

- Uncorrelation. We say that X and Y are uncorrelated if

$$
\langle X Y\rangle=\langle X\rangle\langle Y\rangle
$$

If they are unbiased, then uncorrelation means $\langle X Y\rangle=0$.

- Unbiased random vectors $\vec{S}, \vec{S}^{\prime}$ are uncorrelated if

$$
\left\langle\vec{S} \cdot \overrightarrow{S^{\prime}}\right\rangle=0
$$

where $\vec{S} \cdot \overrightarrow{S^{\prime}}=0$ if they are perpendicular.

Random walks: deviation

- Consider a walk of N unbiased, uncorrelated steps:

$$
\vec{T}_{N}=\vec{S}_{1}+\vec{S}_{2}+\cdots+\vec{S}_{N}
$$

We know that the average $\left\langle\vec{T}_{N}\right\rangle=0$ is boring.

- A better measure is the standard deviation, $\sqrt{\left\langle\vec{T}_{N}^{2}\right\rangle}$, measuring the size of the region covered by the walk.
- Note that $(x+y)^{2}=x^{2}+y^{2}+2 x y$ generalizes to

$$
\begin{aligned}
\vec{T}_{N}^{2} & =\left(\vec{S}_{1}+\cdots+\vec{S}_{N}\right)^{2} \\
& =\vec{S}_{1}^{2}+\cdots+\vec{S}_{N}^{2}+2\left(\vec{S}_{1} \cdot \vec{S}_{2}+\cdots+\vec{S}_{N-1} \cdot \vec{S}_{N}\right)
\end{aligned}
$$

Random walks: finale!

- Now we just take averages of \vec{T}_{N}^{2} using the sum rule.
- If steps are unbiased/uncorrelated, the cross-terms vanish:

$$
\left\langle\vec{T}_{N}^{2}\right\rangle=\left\langle\vec{S}_{1}^{2}\right\rangle+\cdots+\left\langle\vec{S}_{N}^{2}\right\rangle
$$

- If each step length is ℓ, then $\left\langle\vec{S}_{1}^{2}\right\rangle=\ell^{2}$. Then

$$
d=\sqrt{\left\langle\vec{T}_{N}^{2}\right\rangle}=\sqrt{\left.\ell^{2}+\cdots+\ell^{2}\right\rangle}=\sqrt{N} \ell
$$

- This is our big result: a random walk tends to spread a distance $\propto \sqrt{N}$, where N is the number of steps.

Applications

Polymers: intro

- Our first application is to long molecules called polymers.
- A polymer is a chain of approximately straight links of length ℓ. These links can form a random walk in space.

- The most famous polymer is DNA. It is not usually a random walk - unless it spills out of the nucleus!

Polymers: E. Coli genome

- Exercise 1. Below is the spilled DNA of an E. coli bacterium. A rigid chunk has length $\ell=48 \mathrm{~nm}$, corresponding to ~ 140 base pairs (bp).

- Estimate the total length L of the genome in bp.

Polymers: E. Coli genome

- Solution. From the scale, we have $d \sim 5 \mu \mathrm{~m}$. Using $d \sim \sqrt{n} \ell$, the total number of links is

$$
n \sim \frac{d^{2}}{\ell^{2}}=\left(\frac{5 \times 10^{-6}}{48 \times 10^{-9}}\right)^{2} \approx 11 \times 10^{3}
$$

- Multiplying by the number of base pairs in a chunk gives

$$
L=\left(11 \times 10^{3}\right)(140 \mathrm{bp}) \sim 1.5 \mathrm{Mbp} .
$$

- Biologists tell us the correct answer is $L=4.9 \mathrm{Mbp}$. We're within an order of magnitude! (Physics dance.)

Collisions: intro

- Collisions are another rich source of random walks.
- In many situations, particles move in straight lines until they collide! This resets their direction randomly.

- This looks like a random walk, with step length set by something called the mean free path (mfp) λ.

Collisions: cylinders

- To find the mfp, we'll use collision cylinders. This is the volume a particle sweeps out as it moves.
- A useful tweak is to choose a volume such collisions occur when the centre of another particle lies inside.

- Exercise 2. A sphere of radius R collides with spheres of radius r. Show the collision cylinder has radius $R+r$.

Collisions: density and mfp

- The cylinder scattering cross-section is σ. Move a distance d, and the collision cylinder has volume $V=\sigma d$.
- If there are n particles per unit volume, then

$$
V n=\sigma d n=1 \quad \Longrightarrow \quad d=\frac{1}{\sigma n}
$$

- You expect a collision after a distance $d=1 / \sigma n$. But this is just the mfp! So $\lambda=1 / \sigma n$.

Asteroid belt

- Our first application is asteroids!
- The asteroid belt is ring between Jupiter and Mars, 2.2 to 3.2 astronomical units (AU) from the sun, where

$$
1 \mathrm{AU}=1.5 \times 10^{8} \mathrm{~km}
$$

- We never program space probes to avoid asteroids. Why?

Asteroid belt

- The belt has 25 M asteroids, average diameter 10 km .
- Exercise 3. (a) What is the density of asteroids, n ?
- (b) Space probes are much smaller than asteroids. Explain why the collision "strip" has width $\sigma \approx 10 \mathrm{~km}$.

- (c) Find the mean free path of a space probe. Conclude it almost never collides with asteroids!

Asteroid belt

- Solution. (a) Density is total number divided by area:

$$
n=\frac{25 \times 10^{6}}{\pi\left(3.2^{2}-2.2^{2}\right)\left(1.5 \times 10^{8} \mathrm{~km}\right)^{2}} \approx 7 \times 10^{-11} \mathrm{~km}^{-2}
$$

- (b) Approximate the space probe as a point. It collides with an asteroid when it's less than an asteroid radius away! So the collision width $\sigma \approx 10 \mathrm{~km}$.
- (c) Using our formula for mean free path,

$$
\lambda=\frac{1}{\lambda \sigma} \approx \frac{1}{10\left(7 \times 10^{-11}\right)} \mathrm{km} \approx 10 \mathrm{AU}
$$

This is much bigger than the width of the asteroid belt!

Running in the rain

- Another application is the age-old (Vancouver-relevant) question: should you walk or run in the rain?
- We ignored the motion of the asteroids...
- But rain is clearly moving! We deal with this by doing everything in the reference frame of the rain.

Running in the rain

- Suppose shelter is some distance d away. In the rain frame, it moves up at the same speed as you.
- We (naturally) model people as spheres of radius R.

- We should minimise the length of our collision cylinder.

Running in the rain

- Exercise 4. (a) If you run at speed u, raindrops have density n and speed v, argue you collide with k drops for

$$
k=n d \sigma \sqrt{1+(v / u)^{2}}=n d \pi R^{2} \sqrt{1+(v / u)^{2}}
$$

This decreases as we make u bigger!

- (b) If wind blows the rain towards the shelter, argue there is a finite optimal speed to run.
- Bonus. If rain blows towards shelter with horizontal speed u^{\prime} and falls at speed v, show the optimal speed is v^{2} / u^{\prime}.

Running in the rain

- Solutions. (a) It takes time $t=d / u$ to reach shelter. In that time, you travel up $t v=v d / u$ in the rain frame. So
total distance $=\sqrt{d^{2}+(v d / u)^{2}}=d \sqrt{1+(v / u)^{2}}$.
We then multiply by cross-section $\sigma=\pi R^{2}$ and density n.
- (b) The optimal collision cylinder is shown right:

- This corresponds to a finite horizontal speed.

A walk in the sun

- Let's finish by adding random walks back into the mix.
- In the sun, photons are constantly colliding with hydrogen nuclei. The cross-section and density of nuclei are

$$
\sigma=6 \times 10^{-29} \mathrm{~m}^{2}, \quad n=5 \times 10^{32} \mathrm{~m}^{-3}
$$

- Exercise 5. What is the mean free path of a photon?

- Solution. From $\lambda=1 / \sigma n$, we have

$$
\lambda=\left[\left(6 \times 10^{-29}\right)\left(5 \times 10^{32}\right)\right]^{-1} \mathrm{~m} \approx 3 \times 10^{-5} \mathrm{~m}
$$

A walk in the sun

- The sun has a radius of $R_{\odot}=7 \times 10^{8} \mathrm{~m}$ and photons travel at $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ between collisions.
- Exercise 6. If a photon starts in the centre, roughly how long does it take to random walk out of the sun?

- Remember that spread obeys $d \sim \sqrt{N} \lambda$.

A walk in the sun

- Solution. First, we relate time t to number of steps N :

$$
c=\frac{\text { total length of path }}{t}=\frac{N \lambda}{t} \quad \Longrightarrow \quad N=\frac{c t}{\lambda} .
$$

If the photon spreads out a distance $d \sim R_{\odot}$, our law of random walks states $R_{\odot} \sim \sqrt{N} \lambda$. Hence

$$
\begin{aligned}
N=\frac{c t}{\lambda} & \sim \frac{R_{\odot}^{2}}{\lambda^{2}} \\
\Longrightarrow \quad t & \sim \frac{R_{\odot}^{2}}{c \lambda}=\frac{\left(7 \times 10^{8} \mathrm{~m}\right)^{2}}{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(3 \times 10^{-5} \mathrm{~m}\right)} \\
& =5.4 \times 10^{13} \mathrm{~s}
\end{aligned}
$$

This is about 2 million years!

Questions?

Next time: Einstein's atomic escapades!

