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Overview

I Today, we’re going to learn about random walks.

I This is the motion executed by a drunkard!
But also polymers, photons in the sun, atoms...

I We will take an elementary approach.



All the math!



Random walks: steps

I A random walk consists of random steps S .
This could be in one or more dimensions.

I The sum of N steps is

TN = S1 + · · ·+ SN .

We would like to understand some aspects of TN .



Basic probability: averages

I We’re going to need a few basic facts about probability.

I First of all, suppose X is a random number (or function
of random numbers). The average 〈X 〉 is

〈X 〉 =
sum of results for X over many experiments

number of experiments
.

I We won’t need probability, just averages! In pictures:



Basic probability: sum rule

I Sum rule. If X and Y are random, then

〈X + Y 〉 =
sum of (X + Y )

number of experiments

=
(sum of X ) + (sum of Y )

number of experiments
= 〈X 〉+ 〈Y 〉.

In pictures:



Random walks: unbias

I Unbiased. We say the steps are unbiased if 〈S〉 = 0.

I It follows from the sum rule that TN is unbiased:

〈TN〉 = 〈S1〉+ · · ·+ 〈SN〉 = 0.

Random walks go nowhere on average! Boring.

I Let a drunkard move back or forward a step by tossing a
fair coin S . In N tosses, we get ∼ N/2 tails andheads, so

〈S〉 =
N/2− N/2

bcN
= 0.

On average, the drunkard remains where they are!



Basic probability: uncorrelation

I Uncorrelation. We say that X and Y are uncorrelated if

〈XY 〉 = 〈X 〉〈Y 〉.

If they are unbiased, then uncorrelation means 〈XY 〉 = 0.

I Unbiased random vectors ~S , ~S ′ are uncorrelated if

〈~S · ~S ′〉 = 0,

where ~S · ~S ′ = 0 if they are perpendicular.



Random walks: deviation

I Consider a walk of N unbiased, uncorrelated steps:

~TN = ~S1 + ~S2 + · · ·+ ~SN .

We know that the average 〈 ~TN〉 = 0 is boring.

I A better measure is the standard deviation,
√
〈 ~T 2

N〉,
measuring the size of the region covered by the walk.

I Note that (x + y)2 = x2 + y 2 + 2xy generalizes to

~T 2
N = (~S1 + · · ·+ ~SN)2

= ~S2
1 + · · ·+ ~S2

N + 2(~S1 · ~S2 + · · ·+ ~SN−1 · ~SN),



Random walks: finale!

I Now we just take averages of ~T 2
N using the sum rule.

I If steps are unbiased/uncorrelated, the cross-terms vanish:

〈 ~T 2
N〉 = 〈~S2

1 〉+ · · ·+ 〈~S2
N〉.

I If each step length is `, then 〈~S2
1 〉 = `2. Then

d =

√
〈 ~T 2

N〉 =
√
`2 + · · ·+ `2〉 =

√
N`.

I This is our big result: a random walk tends to spread a
distance ∝

√
N , where N is the number of steps.



Applications



Polymers: intro

I Our first application is to long molecules called polymers.

I A polymer is a chain of approximately straight links of
length `. These links can form a random walk in space.

I The most famous polymer is DNA. It is not usually a
random walk — unless it spills out of the nucleus!



Polymers: E. Coli genome

I Exercise 1. Below is the spilled DNA of an E. coli
bacterium. A rigid chunk has length ` = 48 nm,
corresponding to ∼ 140 base pairs (bp).

I Estimate the total length L of the genome in bp.



Polymers: E. Coli genome

I Solution. From the scale, we have d ∼ 5µm. Using
d ∼
√
n`, the total number of links is

n ∼ d2

`2
=

(
5× 10−6

48× 10−9

)2

≈ 11× 103.

I Multiplying by the number of base pairs in a chunk gives

L = (11× 103)(140 bp) ∼ 1.5 Mbp.

I Biologists tell us the correct answer is L = 4.9 Mbp.
We’re within an order of magnitude! (Physics dance.)



Collisions: intro

I Collisions are another rich source of random walks.

I In many situations, particles move in straight lines until
they collide! This resets their direction randomly.

I This looks like a random walk, with step length set by
something called the mean free path (mfp) λ.



Collisions: cylinders

I To find the mfp, we’ll use collision cylinders. This is the
volume a particle sweeps out as it moves.

I A useful tweak is to choose a volume such collisions occur
when the centre of another particle lies inside.

I Exercise 2. A sphere of radius R collides with spheres of
radius r . Show the collision cylinder has radius R + r .



Collisions: density and mfp

I The cylinder scattering cross-section is σ. Move a
distance d , and the collision cylinder has volume V = σd .

I If there are n particles per unit volume, then

Vn = σdn = 1 =⇒ d =
1

σn
.

I You expect a collision after a distance d = 1/σn.
But this is just the mfp! So λ = 1/σn.



Asteroid belt

I Our first application is asteroids!

I The asteroid belt is ring between Jupiter and Mars, 2.2 to
3.2 astronomical units (AU) from the sun, where

1 AU = 1.5× 108 km.

I We never program space probes to avoid asteroids. Why?



Asteroid belt

I The belt has 25M asteroids, average diameter 10 km.

I Exercise 3. (a) What is the density of asteroids, n?

I (b) Space probes are much smaller than asteroids.
Explain why the collision “strip” has width σ ≈ 10 km.

I (c) Find the mean free path of a space probe. Conclude it
almost never collides with asteroids!



Asteroid belt

I Solution. (a) Density is total number divided by area:

n =
25× 106

π(3.22 − 2.22)(1.5× 108 km)2
≈ 7× 10−11 km−2.

I (b) Approximate the space probe as a point. It collides
with an asteroid when it’s less than an asteroid radius
away! So the collision width σ ≈ 10 km.

I (c) Using our formula for mean free path,

λ =
1

λσ
≈ 1

10(7× 10−11)
km ≈ 10 AU.

This is much bigger than the width of the asteroid belt!



Running in the rain

I Another application is the age-old (Vancouver-relevant)
question: should you walk or run in the rain?

I We ignored the motion of the asteroids...

I But rain is clearly moving! We deal with this by doing
everything in the reference frame of the rain.



Running in the rain

I Suppose shelter is some distance d away. In the rain
frame, it moves up at the same speed as you.

I We (naturally) model people as spheres of radius R .

I We should minimise the length of our collision cylinder.



Running in the rain

I Exercise 4. (a) If you run at speed u, raindrops have
density n and speed v , argue you collide with k drops for

k = ndσ
√

1 + (v/u)2 = ndπR2
√

1 + (v/u)2.

This decreases as we make u bigger!

I (b) If wind blows the rain towards the shelter, argue there
is a finite optimal speed to run.

I Bonus. If rain blows towards shelter with horizontal speed
u′ and falls at speed v , show the optimal speed is v 2/u′.



Running in the rain

I Solutions. (a) It takes time t = d/u to reach shelter. In
that time, you travel up tv = vd/u in the rain frame. So

total distance =
√

d2 + (vd/u)2 = d
√

1 + (v/u)2.

We then multiply by cross-section σ = πR2 and density n.

I (b) The optimal collision cylinder is shown right:

I This corresponds to a finite horizontal speed.



A walk in the sun

I Let’s finish by adding random walks back into the mix.

I In the sun, photons are constantly colliding with hydrogen
nuclei. The cross-section and density of nuclei are

σ = 6× 10−29 m2, n = 5× 1032 m−3.

I Exercise 5. What is the mean free path of a photon?

I Solution. From λ = 1/σn, we have

λ = [(6× 10−29)(5× 1032)]−1 m ≈ 3× 10−5 m.



A walk in the sun

I The sun has a radius of R� = 7× 108 m and photons
travel at c = 3× 108 m/s between collisions.

I Exercise 6. If a photon starts in the centre, roughly how
long does it take to random walk out of the sun?

I Remember that spread obeys d ∼
√
Nλ.



A walk in the sun

I Solution. First, we relate time t to number of steps N :

c =
total length of path

t
=

Nλ

t
=⇒ N =

ct

λ
.

If the photon spreads out a distance d ∼ R�, our law of
random walks states R� ∼

√
Nλ. Hence

N =
ct

λ
∼

R2
�

λ2

=⇒ t ∼
R2
�

cλ
=

(7× 108 m)2

(3× 108 m/s)(3× 10−5 m)

= 5.4× 1013 s.

This is about 2 million years!



Questions?

Next time: Einstein’s atomic escapades!
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