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For our second problem session of 2023, we will follow in the illustrious footsteps of 
Stephen Hawking, and discover that black holes glow. This means they slowly leak 
energy into space, and eventually vanish in a burst of high-energy radiation! We will 
use this to calculate the lifetime of a solar mass black hole.

We’re going to need five basic facts from Douglas Scott’s talk. These are:

• the size of a black hole;

• the uncertainty principle of quantum mechanics;

• the relativistic energy of a moving particle;

• the average energy of particles in hot systems; and

• the rate a hot object radiates energy.

We picture these using cartoons below.
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Let’s go through these more carefully:

• Black holes. First, a black hole of mass M has a Schwarzschild radius of

Rs =
2GM

c2
, (1)

where G is Newton’s gravitational constant, and c is the speed of light, given by

G = 6.67× 10−11 m3 kg−1 s−2 (2)

c = 3.00× 108 m s−1. (3)

If you venture within Rs of the black hole, you can never escape! You will get a chance
to derive this below.

• Uncertainty. A second useful fact is Heisenberg’s uncertainty principle, which tells us
that the uncertainty in position, multiplied by the uncertainty in momentum, are at least
as big as Planck’s constant h:

∆x ·∆p ≥ h

4π
, h = 6.63× 10−34 J s−1. (4)

For classical measurements, this is typically much smaller than the precision of our in-
struments, but this tiny, inescapable uncertainty has very deep consequences.

• Relativistic energy. Third, we need a generalisation of Einstein’s famous relation E =

mc2, which encompasses both light and matter:

E2 = m2c4 + p2c2. (5)

Here, m is the rest mass, and p is the usual classical momentum. This reduces to E = mc2

for a stationary object, but gives
E = pc (6)

for an object like a photon which has no rest mass.

• Thermal energy. Fourth on our list is the connection between temperature and typical
energy. For a lump of particles (including massless particles like photons!) at tempera-
ture T , the typical energy per particle is

Eavg ∼ kBT, kB = 1.38× 10−23 J K−1, (7)

where kB is Boltzmann’s constant, not to be confused with the (related) Stefan-Boltzmann
constant governing luminosity. There are various dimensionless constants that can ap-
pear in (7), related to the properties of the system, but we won’t need them here.

• Luminosity. Finally, we require the Stefan-Boltzmann law. This tells us that a hot object
at temperature T (in Kelvin), with surface area A, loses energy at a rate L (for luminosity)
given by

L = σAT 4, σ = 5.67× 10−8 W m−2 K−4, (8)
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where σ is the Stefan-Boltzmann constant.1

In 1974, Stephen Hawking discovered a remarkable fact: black holes glow, emitting faint
radiation like a lump of coal or a light bulb at some temperature T . We can determine the
temperature T , and hence the rough time scale for evaporation, but first we should explain
how it is even possible for a black hole to glow, when by definition it traps light.

The heuristic explanation is as follows: quantum mechanics allows for the production of virtual
pairs of photons moving in opposite directions. Usually, these pop into existence briefly and
then disappear again. But just outside the black hole, one of these photons can fall into the
event horizon, while the other zooms off to infinity! It is this second photon that we can detect.

1. Suppose a small particle of mass m is a distance r from the black hole, mass M . The
gravitational potential energy is

U = −GMm

r
.

This is negative, since we must put energy U into the system to separate the mass m and
the black hole so that they no longer feel each other’s gravitational influence.

(a) Suppose we try to separate the particle from the black hole by giving it some kinetic
energy. Show that, starting at distance r, it must travel at speed

vesc =

√
2GM

r

in order to escape the black hole’s gravitational pull.

(b) As we get closer to the black hole, the escape velocity will increase. Show that at
the Schwarzschild radius (1), the escape velocity becomes the speed of light. Not
even photons can escape!

2. (a) For particles produced near the horizon of a black hole, what is the rough uncer-
tainty in position? Don’t worry about numerical factors.

(b) Using the Heisenberg uncertainty principle (4), argue that the uncertainty in mo-
mentum is order

∆p ∼ hc2

GM
.

1Depending on properties of the body and its surrounding medium, the rate L can be modified by an emissivity
factor ε, 0 < ε ≤ 1. A perfect blackbody (perfect absorber and emitter) has ε = 1. A black hole is, classically, a
perfect absorber, and once we take quantum mechanics into account, a perfect emitter too!
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3. (a) From Einstein’s relation (6), find the uncertainty in energy ∆E. Assuming that the
uncertainty in energy is roughly the same as the energy of a typical virtual photon,2

Eavg ∼ ∆E,

conclude that

Eavg ∼
hc3

GM
.

(b) From (7), deduce that the Hawking temperature of a black hole of mass M is

TH ∼
hc3

kBGM
. (9)

Notice that the black hole gets hotter as it gets smaller!

4. (a) What is the total energy content of a black hole, of mass M , at rest? Hint. Use (5).

(b) The luminosity is the rate of energy loss. Argue (from dimensional analysis or oth-
erwise) that the lifetime of a black hole is

tlife ∼
Mc2

L
=

Mc2

σAT 4
H

.

(c) Use A ∼ R2
s and (9) to show that

tlife ∼
G2k4BM

3

σh4c6
. (10)

(d) The sun has mass
M� = 2× 1030 kg.

Plug this into (10), along with values for the various fundamental constants, and
estimate the lifetime of a solar-mass black hole. Give your answer in years, and
compare to the age of the universe, ∼ 1010 y.

2This is a weird property. Usually, the average energy Eavg is completely unrelated to the uncertainty ∆E. It
just so happens that, for a hot gas of photons, this relation Eavg ∼ ∆E is true. So our assumption is really that the
virtual photons form a gas.
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